0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

加速度传感器QMA6100P的使用

恒泰瑞科技有限公司 2023-09-22 08:34 次阅读

本文聊聊上海矽睿产的加速度传感器QMA6100P的使用。

1、特性

高集成,小尺寸封装:2 x 2 x 0.95 mm LGA
14位数模转化,低噪声 ·
具有标准模式和快速模式,支持I2C和SPI接口
内置self-test
大范围操作电压1.7V-3.6V,与低功耗2~50μA
集成64位FIFO存贮器,符合RoHS标准,无卤素添加
内置运动算法 ,尤其是硬件计步算法
可在-40°C~85°C的温度中工作

2、引脚说明

c76e13a2-58df-11ee-9788-92fbcf53809c.png
可以看出提供了两个外部中断引脚,支持SPI或I2C通信

3、I2C读写地址

c78b2f0a-58df-11ee-9788-92fbcf53809c.png

4、部分寄存器

4.1、设备ID寄存器

c79edd84-58df-11ee-9788-92fbcf53809c.png
可以通过读这个寄存器判断设备是否存在,默认是0x90。

4.2、软复位寄存器c7b4ec00-58df-11ee-9788-92fbcf53809c.png

4.3、数据寄存器c7d650ca-58df-11ee-9788-92fbcf53809c.png

通过这6个寄存器可以读出三轴数据。

4.4、量程寄存器

c7ef9864-58df-11ee-9788-92fbcf53809c.png
通过这个寄存器设置测量范围。

4.5、带宽寄存器

c800e86c-58df-11ee-9788-92fbcf53809c.png

4.6、电源管理寄存器

c8202b28-58df-11ee-9788-92fbcf53809c.png

5、原理图设计

c83ef0c6-58df-11ee-9788-92fbcf53809c.png

6、代码

本文使用软硬件I2C与QMA6100P通讯,通过宏切换。

void I2cInit(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
I2C_InitTypeDef I2C_InitStructure;


RCC_I2CCLKConfig(RCC_I2C1CLK_SYSCLK);

RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);

RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOF , ENABLE);
/* Connect PXx to I2C_SCL*/
GPIO_PinAFConfig(GPIOF, GPIO_PinSource6, GPIO_AF_1);
/* Connect PXx to I2C_SDA*/
GPIO_PinAFConfig(GPIOF, GPIO_PinSource7, GPIO_AF_1);


/* GPIO configuration */
/* Configure sEE_I2C pins: SCL */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_OD;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOF, &GPIO_InitStructure);

/* Configure sEE_I2C pins: SDA */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_Init(GPIOF, &GPIO_InitStructure);


I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
I2C_InitStructure.I2C_AnalogFilter = I2C_AnalogFilter_Enable;
I2C_InitStructure.I2C_DigitalFilter = 0x00;
I2C_InitStructure.I2C_OwnAddress1 = 0x00;
I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
I2C_InitStructure.I2C_Timing = 0x40B22536;//0x20D22E37;// 0x02105070; //0x40B22536//100k, 0x10950C27; //400kHz
I2C_Init(I2C2, &I2C_InitStructure);

/* Apply sEE_I2C configuration after enabling it */
I2C_Init(I2C2, &I2C_InitStructure);

/* sEE_I2C Peripheral Enable */
I2C_Cmd(I2C2, ENABLE);
}

void I2cWrite(uint8_t reg,uint8_t var)
{
/* While the bus is busy */
while(I2C_GetFlagStatus(I2C2, I2C_FLAG_BUSY) != RESET){};

/* Send Touch address for write */
I2C_TransferHandling(I2C2, (SLAVE_ADDR<<1), 1, I2C_Reload_Mode, I2C_Generate_Start_Write);

while(I2C_GetFlagStatus(I2C2, I2C_FLAG_TXIS )==RESET){}; // I2C_FLAG_TXE

I2C_SendData(I2C2, reg);

while(I2C_GetFlagStatus(I2C2, I2C_FLAG_TCR) == RESET){};

I2C_TransferHandling(I2C2, (SLAVE_ADDR<<1), 1, I2C_AutoEnd_Mode, I2C_No_StartStop);

/* Test on EV8 and clear it */
while (I2C_GetFlagStatus(I2C2, I2C_FLAG_TXIS) == RESET){}; //I2C_FLAG_TXIS
/* Send the current byte */
I2C_SendData(I2C2, var);

/* Send STOP condition */
while(I2C_GetFlagStatus(I2C2, I2C_FLAG_STOPF) == RESET){};
}


uint8_t I2cRead(uint8_t reg)
{
uint8_t ret=0;

/* While the bus is busy */
while(I2C_GetFlagStatus(I2C2, I2C_FLAG_BUSY) != RESET){};

/* Generate start & wait event detection */
I2C_TransferHandling(I2C2, (SLAVE_ADDR<<1), 1, I2C_SoftEnd_Mode, I2C_Generate_Start_Write);

while(I2C_GetFlagStatus(I2C2, I2C_FLAG_TXIS ) == RESET){}; //I2C_FLAG_TXIS

I2C_SendData(I2C2, reg);

while (I2C_GetFlagStatus(I2C2, I2C_FLAG_TC) == RESET){};

/* Send STRAT condition a second time */
I2C_TransferHandling(I2C2, (SLAVE_ADDR<<1), 1, I2C_AutoEnd_Mode, I2C_Generate_Start_Read);

while(I2C_GetFlagStatus(I2C2, I2C_FLAG_RXNE) == RESET){};

/* Read a byte from the EEPROM */
ret = I2C_ReceiveData(I2C2);

/* Enable Acknowledgement to be ready for another reception */
while(I2C_GetFlagStatus(I2C2, I2C_FLAG_STOPF) == RESET){};

return ret;
}

#define _SCL_PORT GPIOF
#define _SCL_PIN GPIO_Pin_6

#define _SDA_PORT GPIOF
#define _SDA_PIN GPIO_Pin_7

void _I2cInit(void)
{
/* sEE_I2C_SCL_GPIO_CLK and sEE_I2C_SDA_GPIO_CLK Periph clock enable */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOF , ENABLE);
/* sEE_I2C Periph clock enable */

GPIO_InitTypeDef GPIO_InitStructure;

/* GPIO configuration */
/* Configure sEE_I2C pins: SCL */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOF, &GPIO_InitStructure);

/* Configure sEE_I2C pins: SDA */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_Init(GPIOF, &GPIO_InitStructure);
}


void _SDA_IN(void)
{
GPIO_InitTypeDef GPIO_InitStructure;

/* GPIO configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOF, &GPIO_InitStructure);
}


void _SDA_OUT(void)
{
GPIO_InitTypeDef GPIO_InitStructure;

/* GPIO configuration */
/* Configure sEE_I2C pins: SCL */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOF, &GPIO_InitStructure);
}

void _I2C_Start(void)
{
_SDA_OUT();
GPIO_SetBits(_SDA_PORT,_SDA_PIN); //SDA=1
DelayUs(10);
GPIO_SetBits(_SCL_PORT,_SCL_PIN); //SCL=1
DelayUs(10);
GPIO_ResetBits(_SDA_PORT,_SDA_PIN);//SDA=0
DelayUs(10);
GPIO_ResetBits(_SCL_PORT,_SCL_PIN);//SCL=0
DelayUs(10);
}

void _I2C_Stop(void)
{
_SDA_OUT();

GPIO_ResetBits(_SDA_PORT,_SDA_PIN);//SDA=0
DelayUs(10);
GPIO_SetBits(_SCL_PORT,_SCL_PIN); //SCL=1
DelayUs(10);
GPIO_SetBits(_SDA_PORT,_SDA_PIN); //SDA=1
DelayUs(10);
}


void _I2C_Ack(void)
{
_SDA_OUT();
GPIO_ResetBits(_SDA_PORT,_SDA_PIN);//SDA=0
DelayUs(5);
GPIO_SetBits(_SCL_PORT,_SCL_PIN); //SCL=1
DelayUs(5);
GPIO_ResetBits(_SCL_PORT,_SCL_PIN); //SCL=0
}


void _I2C_NAck(void)
{
GPIO_SetBits(_SDA_PORT,_SDA_PIN); //SDA=1
DelayUs(10);
GPIO_SetBits(_SCL_PORT,_SCL_PIN); //SCL=1
DelayUs(10);
GPIO_ResetBits(_SCL_PORT,_SCL_PIN); //SCL=0
DelayUs(10);
}


uint8_t _I2C_Wait_Ack(void)
{
uint8_t ucErrTime=0;

#if 0
SDA_IN();
GPIO_SetBits(_SDA_PORT,_SDA_PIN); //释放总线
#else
GPIO_SetBits(_SDA_PORT,_SDA_PIN); //释放总线
_SDA_IN();
#endif

DelayUs(5);
GPIO_SetBits(_SCL_PORT,_SCL_PIN); //SCL=1
DelayUs(5);
while(GPIO_ReadInputDataBit(_SDA_PORT,_SDA_PIN))
{
ucErrTime++;
if(ucErrTime>250)
{
_I2C_Stop();
return 1;
}
}
GPIO_ResetBits(_SCL_PORT,_SCL_PIN); //SCL=0
DelayUs(5);
return 0;
}


uint8_t _I2C_Read_Byte(uint8_t ack)
{
uint8_t i,rxdata=0;

#if 0
_SDA_IN();
GPIO_SetBits(_SDA_PORT,_SDA_PIN); //释放总线
#else
GPIO_SetBits(_SDA_PORT,_SDA_PIN); //释放总线
_SDA_IN();
#endif

for(i=0;i<8;i++ )
{
GPIO_ResetBits(_SCL_PORT,_SCL_PIN); //SCL=0
DelayUs(5);
GPIO_SetBits(_SCL_PORT,_SCL_PIN); //SCL=1
DelayUs(5);
rxdata<<=1;
if(GPIO_ReadInputDataBit(_SDA_PORT,_SDA_PIN))
{
rxdata|=0x01;
}
DelayUs(5);
}
if (!ack)
_I2C_NAck();//nACK
else
_I2C_Ack(); //ACK

return rxdata;
}

void _I2C_Send_Byte(uint8_t txd)
{
uint8_t i;

_SDA_OUT();
GPIO_ResetBits(_SCL_PORT,_SCL_PIN); //SCL=0

for(i=0;i<8;i++)
{
if((txd&0x80)==0x80)
GPIO_SetBits(_SDA_PORT,_SDA_PIN);
else
GPIO_ResetBits(_SDA_PORT,_SDA_PIN);

txd<<=1;
DelayUs(5);
GPIO_SetBits(_SCL_PORT,_SCL_PIN); //SCL=1
DelayUs(5);
GPIO_ResetBits(_SCL_PORT,_SCL_PIN); //SCL=0
DelayUs(5);
}
}


void _WriteByteReg(uint8_t addr,uint8_t reg,uint8_t data)
{
_I2C_Start();
_I2C_Send_Byte(addr); //write addr
_I2C_Wait_Ack();
_I2C_Send_Byte(reg);
_I2C_Wait_Ack();
_I2C_Send_Byte(data);
_I2C_Wait_Ack();
_I2C_Stop();
}


uint8_t _ReadByteReg(uint8_t addr,uint8_t reg)
{
uint8_t data;

_I2C_Start();
_I2C_Send_Byte(addr); //write addr
_I2C_Wait_Ack();
_I2C_Send_Byte(reg);
_I2C_Wait_Ack();

_I2C_Start();
_I2C_Send_Byte(addr+1); //read addr
_I2C_Wait_Ack();
data=_I2C_Read_Byte(0); //no ack
_I2C_Stop();

return data;
}

void _WriteRegU8(uint8_t reg,uint8_t data)
{
_I2C_Start();
_I2C_Send_Byte(SLAVE_ADDR<<1|0x00); //write addr
_I2C_Wait_Ack();
_I2C_Send_Byte(reg);
_I2C_Wait_Ack();
_I2C_Send_Byte(data);
_I2C_Wait_Ack();
_I2C_Stop();
}


uint8_t _ReadRegU8(uint8_t reg)
{
uint8_t data;

_I2C_Start();
_I2C_Send_Byte(SLAVE_ADDR<<1|0x00); //write addr
_I2C_Wait_Ack();
_I2C_Send_Byte(reg);
_I2C_Wait_Ack();

_I2C_Start();
_I2C_Send_Byte(SLAVE_ADDR<<1|0x01); //read addr
_I2C_Wait_Ack();
data=_I2C_Read_Byte(0); //no ack
_I2C_Stop();

return data;
}

#if 1
#define GsensorRead I2cRead
#define GsensorWrite I2cWrite
#define GsensorIoInit I2cInit
#else
#define GsensorRead _ReadRegU8
#define GsensorWrite _WriteRegU8
#define GsensorIoInit _I2cInit
#endif

void QMA6100PCheck(void)
{
uint8_t chip_id=0;

chip_id=GsensorRead(QMA6100P_REG_CHIP_ID);

log_debug ("chip id=%d\r\n",chip_id);

if(chip_id==0x90)
{
log_debug("device exist\r\n");
}
else
{
log_debug("device not exist\r\n");
}
}

void QMA6100PInit(void)
{
GsensorIoInit();

QMA6100PCheck();

GsensorWrite(QMA6100P_REG_RESET, 0xb6);
DelayMs(5);
GsensorWrite(QMA6100P_REG_RESET, 0x00);
DelayMs(10);

GsensorWrite(0x11, 0x80);
GsensorWrite(0x11, 0x84);
GsensorWrite(0x4a, 0x20);
GsensorWrite(0x56, 0x01);
GsensorWrite(0x5f, 0x80);
DelayMs(2);
GsensorWrite(0x5f, 0x00);
DelayMs(10);

GsensorWrite(QMA6100P_REG_RANGE,QMA6100P_RANGE_8G);
GsensorWrite(QMA6100P_REG_BW_ODR,QMA6100P_BW_100);
GsensorWrite(QMA6100P_REG_POWER_MANAGE,QMA6100P_MCLK_51_2K|0x80);

qma6100p_hand_raise_down(3, QMA6100P_MAP_INT1, 1);

GsensorWrite(0x21, 0x03);// default 0x1c, step latch mode
}


void QMA6100PReadRawData(QMA6100PRawData_t *rawdata)
{
int16_t temp=0;

temp=GsensorRead(QMA6100P_REG_XOUTL)+(GsensorRead(QMA6100P_REG_XOUTH)<<8);
rawdata->acc_x=temp>>2;

temp=GsensorRead(QMA6100P_REG_YOUTL)+(GsensorRead(QMA6100P_REG_YOUTH)<<8);
rawdata->acc_y=temp>>2;

temp=GsensorRead(QMA6100P_REG_ZOUTL)+(GsensorRead(QMA6100P_REG_ZOUTH)<<8);
rawdata->acc_z=temp>>2;
}

void QMA6100PPolling(void)
{
static uint32_t curtick=0;

float angle_x,angle_y,angle_z;

if(SystemGetTick()-curtick>=200)
{
QMA6100PRawData_t rawdata;
float x ,y,z,g;

QMA6100PReadRawData(&rawdata);

x=rawdata.acc_x*QMA6100P_SENSITITY_8G/1000.0;
y=rawdata.acc_y*QMA6100P_SENSITITY_8G/1000.0;
z=rawdata.acc_z*QMA6100P_SENSITITY_8G/1000.0;

g=sqrt(x*x+y*y+z*z);

log_debug("%f, %f, %f, %f\r\n",x,y,z,g);

curtick=SystemGetTick();
}
}

#define SLAVE_ADDR QMA6100P_ADDRESS

#define QMA6100P_ADDRESS 0x12

#define QMA6100P_DEVICE_ID0x90

#define QMA6100P_REG_CHIP_ID 0x00

#define QMA6100P_REG_XOUTL0x01
#define QMA6100P_REG_XOUTH0x02
#define QMA6100P_REG_YOUTL0x03
#define QMA6100P_REG_YOUTH0x04
#define QMA6100P_REG_ZOUTL0x05
#define QMA6100P_REG_ZOUTH0x06

#define QMA6100P_REG_STEP_CNT_L0x07
#define QMA6100P_REG_STEP_CNT_M0x08
#define QMA6100P_REG_STEP_CNT_H0x0d

#define QMA6100P_REG_INT_STATUS_00x09
#define QMA6100P_REG_INT_STATUS_10x0a
#define QMA6100P_REG_INT_STATUS_20x0b
#define QMA6100P_REG_INT_STATUS_30x0c

#define QMA6100P_REG_FIFO_STATE0x0e

#define QMA6100P_REG_RANGE0x0f

#define QMA6100P_REG_BW_ODR0x10

#define QMA6100P_REG_POWER_MANAGE0x11

#define QMA6100P_REG_STEP_SAMPLE_CNT0x12
#define QMA6100P_REG_STEP_PRECISION0x13
#define QMA6100P_REG_STEP_TIME_LOW0x14
#define QMA6100P_REG_STEP_TIME_UP0x15

#define QMA6100P_REG_INT_EN_00x16
#define QMA6100P_REG_INT_EN_10x17
#define QMA6100P_REG_INT_EN_20x18

#define QMA6100P_REG_INT1_MAP_00x19
#define QMA6100P_REG_INT1_MAP_10x1a
#define QMA6100P_REG_INT2_MAP_00x1b
#define QMA6100P_REG_INT2_MAP_10x1c

#define QMA6100P_REG_INTPIN_CFG0x20

#define QMA6100P_REG_INT_CFG0x21

#define QMA6100P_REG_OS_CUST_X 0x27
#define QMA6100P_REG_OS_CUST_Y0x28
#define QMA6100P_REG_OS_CUST_Z0x29

#define QMA6100P_REG_NVM0x33
#define QMA6100P_REG_RESET0x36


#define QMA6100P_REG_DRDY_BIT0x10// enable 1

#define QMA6100P_REG_AMD_X_BIT0x01
#define QMA6100P_REG_AMD_Y_BIT0x02
#define QMA6100P_REG_AMD_Z_BIT0x04

typedef enum
{
QMA6100P_MAP_INT1,
QMA6100P_MAP_INT2,
QMA6100P_MAP_INT_NONE
}qma6100p_int_map;

typedef enum
{
QMA6100P_BW_100 = 0,
QMA6100P_BW_200 = 1,
QMA6100P_BW_400 = 2,
QMA6100P_BW_800 = 3,
QMA6100P_BW_1600 = 4,
QMA6100P_BW_50 = 5,
QMA6100P_BW_25 = 6,
QMA6100P_BW_12_5 = 7,
QMA6100P_BW_OTHER = 8
}qma6100p_bw;

typedef enum
{
QMA6100P_RANGE_2G = 0x01,
QMA6100P_RANGE_4G = 0x02,
QMA6100P_RANGE_8G = 0x04,
QMA6100P_RANGE_16G = 0x08,
QMA6100P_RANGE_32G = 0x0f
}qma6100p_range;

typedef enum
{
QMA6100P_LPF_OFF = (0x00<<5),
QMA6100P_LPF_1 = (0x04<<5),
QMA6100P_LPF_2 = (0x01<<5),
QMA6100P_LPF_4 = (0x02<<5),
QMA6100P_LPF_8 = (0x03<<5),
QMA6100P_LPF_RESERVED = 0xff
}qma6100p_nlpf;

typedef enum
{
QMA6100P_HPF_DIV_OFF = (0x00<<5),
QMA6100P_HPF_DIV_10 = (0x01<<5),
QMA6100P_HPF_DIV_25 = (0x02<<5),
QMA6100P_HPF_DIV_50 = (0x03<<5),
QMA6100P_HPF_DIV_100 = (0x04<<5),
QMA6100P_HPF_DIV_200 = (0x05<<5),
QMA6100P_HPF_DIV_400 = (0x06<<5),
QMA6100P_HPF_DIV_800 = (0x07<<5),
QMA6100P_HPF_RESERVED = 0xff
}qma6100p_nhpf;

typedef enum
{
QMA6100P_MODE_STANDBY = 0,
QMA6100P_MODE_ACTIVE = 1,
QMA6100P_MODE_MAX
}qma6100p_mode;

typedef enum
{
QMA6100P_MCLK_102_4K = 0x03,
QMA6100P_MCLK_51_2K = 0x04,
QMA6100P_MCLK_25_6K = 0x05,
QMA6100P_MCLK_12_8K = 0x06,
QMA6100P_MCLK_6_4K = 0x07,
QMA6100P_MCLK_RESERVED = 0xff
}qma6100p_mclk;

typedef enum
{
QMA6100P_STEP_LPF_0 = (0x00<<6),
QMA6100P_STEP_LPF_2 = (0x01<<6),
QMA6100P_STEP_LPF_4 = (0x02<<6),
QMA6100P_STEP_LPF_8 = (0x03<<6),
QMA6100P_STEP_LPF_RESERVED = 0xff
}qma6100p_step_lpf;

typedef enum
{
QMA6100P_STEP_AXIS_ALL = 0x00,
QMA6100P_STEP_AXIS_YZ = 0x01,
QMA6100P_STEP_AXIS_XZ = 0x02,
QMA6100P_STEP_AXIS_XY = 0x03,
QMA6100P_STEP_AXIS_RESERVED = 0xff
}qma6100p_step_axis;

typedef enum
{
QMA6100P_STEP_START_0 = 0x00,
QMA6100P_STEP_START_4 = 0x20,
QMA6100P_STEP_START_8 = 0x40,
QMA6100P_STEP_START_12 = 0x60,
QMA6100P_STEP_START_16 = 0x80,
QMA6100P_STEP_START_24 = 0xa0,
QMA6100P_STEP_START_32 = 0xc0,
QMA6100P_STEP_START_40 = 0xe0,
QMA6100P_STEP_START_RESERVED = 0xff
}qma6100p_step_start_cnt;

typedef enum
{
QMA6100P_FIFO_MODE_NONE,
QMA6100P_FIFO_MODE_FIFO,
QMA6100P_FIFO_MODE_STREAM,
QMA6100P_FIFO_MODE_BYPASS,
QMA6100P_FIFO_MODE_MAX
}qma6100p_fifo_mode;

typedef enum
{
QMA6100P_TAP_SINGLE = 0x80,
QMA6100P_TAP_DOUBLE = 0x20,
QMA6100P_TAP_TRIPLE = 0x10,
QMA6100P_TAP_QUARTER = 0x01,
QMA6100P_TAP_MAX = 0xff
}qma6100p_tap;

typedef enum
{
QMA6100P_SENSITITY_2G = 244,
QMA6100P_SENSITITY_4G = 488,
QMA6100P_SENSITITY_8G = 977,
QMA6100P_SENSITITY_16G = 1950,
QMA6100P_SENSITITY_32G = 3910
}qma6100p_sensitity;

typedef struct {
int16_t temp;

int16_t acc_x;
int16_t acc_y;
int16_t acc_z;
}QMA6100PRawData_t;

7、读取数据

c853ecec-58df-11ee-9788-92fbcf53809c.png
本测试中读取了x,y,z三轴的值,并计算出了g的值。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2479

    文章

    44372

    浏览量

    724323
  • 寄存器
    +关注

    关注

    30

    文章

    4425

    浏览量

    116103
  • 加速度传感器

    关注

    12

    文章

    410

    浏览量

    54483
收藏 人收藏

    评论

    相关推荐

    什么是加速度传感器加速度传感器如何工作

    加速度传感器加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力
    发表于 02-02 15:30

    声发射传感器加速度传感器大全!!

    传感器S3SC 加速度传感器S6CG 加速度传感器P3SCM 加速度传感器S2SCB 加速度传感器SW05SG 加速度传感器BW21SG 加速度传感器S21C
    发表于 04-24 11:53

    请问三轴加速度传感器QMA6981怎么判断物体状态

    加速度传感器QMA6981,芯片资料全是英文的,很多东西不是很理解,目前只打算通过控制这个芯片,判断物体是否静止、平移、翻转这三种状态,器件是IIC通信的,谁可以讲解一下怎么判断?通过通信从芯片里面读取到的数据该怎么处理才可以判断物体的状态?
    发表于 08-11 15:06

    加速度传感器的原理

    加速度传感器可以帮助你的机器人了解它现在身处的环境。  是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着***自己前往
    发表于 11-08 15:46

    加速度传感器原理

    加速度传感器可以帮助你的机器人了解它现在身处的环境。  是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着***自己前往
    发表于 11-09 10:39

    基于QMA5981三轴单芯片加速度传感器产品

    加速度计,是由陀螺仪(角速度传感器)的改进的。  加速度传感器QMA5981是矽睿科技自主研发的第一款三轴单芯片加速度传感器产品。QMA5981是专门针对智能移动终端,包括智能手机、智能平板、智能手表以及
    发表于 11-29 11:25

    加速度传感器是什么

    加速度传感器?加速度是指单位时间内产生的速度,测量加速度的IC就叫加速度传感器。通过测量加速度,可以测得物体的倾斜、振动等信息。加速度单位为m/s2(※国际单位制SI)。另外,单位G是以※标准
    发表于 03-15 00:46

    加速度传感器的选型

    传感器应用十分广泛,类型多种多样,在各行各业都有应用。因此,在这里主要介绍用于振动测试的振动传感器的选型。按测量振动参量分类可分为三大类:位移传感器速度传感器加速度传感器(也称为
    发表于 08-11 07:49

    加速度传感器

    加速度传感器原理,加速度传感器应用及分类等知识。具体涵盖压电式加速度传感器、三轴加速度传感器、霍尔速度传感器、mems加速度传感器速度传感器,其中也概
    发表于 04-28 16:27
    <b>加速度</b><b>传感器</b>

    加速度传感器原理与应用简介

    加速度传感器原理与应用简介      1、什么是
    发表于 11-25 09:53 3244次阅读

    什么是加速度传感器

    加速度传感器
    发表于 04-01 16:50 1516次阅读

    加速度传感器的分类和原理是怎样的?该如何正确选择加速度传感器

    加速度传感器,正如它的名称,它的输出是交流耦合的。此类传感器不能用来测试静态的加速度,比如重力加速度和离心加速度。他们仅适合测量动态事件。而直流响应的加速度传感器,具有直流耦合输出
    发表于 07-10 08:52 6484次阅读

    三轴加速度传感器原理_三轴加速度传感器应用

    加速度传感器原理,其次介绍了三轴加速度传感器优点,最后介绍了三轴加速度传感器应用。
    发表于 10-17 15:19 1.8w次阅读

    加速度传感器有哪几种,加速度传感器如何选择参数

    加速度传感器是一种用于测量加速度传感器,通常使用微机电系统(MEMS)技术直接测量物体的加速度。在很多场景下,选择合适的加速度传感器很重要。本文将介绍加速度传感器的分类以及选型。
    的头像 发表于 07-25 10:29 676次阅读

    QMA8658A 6轴加速度传感器概述和主要特点

    QMA8658A 是一款功能强大的6轴加速度传感器,其内置了3轴加速度计和3轴陀螺仪,能够同时测量三个方向的加速度和角速度。该传感器广泛应用于无人机、机器人、智能手机等领域。为了帮助开发人员快速评估
    发表于 09-24 14:36 64次阅读
    <b>QMA</b>8658A 6轴<b>加速度</b><b>传感器</b>概述和主要特点