0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电机驱动器 PCB 布局准则你知道多少

PCB线路板打样 来源:ct 2019-08-15 00:39 次阅读

❂引线封装布局

SOT-23 和 SOIC 封装

标准的引线封装(如 SOIC 和 SOT-23 封装)通常用于低功率电机驱动器中(图 6)。

为了充分提高引线封装的功耗能力,MPS公司采用“倒装芯片引线框架”结构(图 7)。在不使用接合线的情况下,使用铜凸点和焊料将芯片粘接至金属引线,从而可通过引线将热量从芯片传导至 PCB

倒装芯片引线框架结构有助于充分提高引线封装的功耗能力。

通过将较大的铜区域连接至承载较大电流的引线,可优化热性能。在电机驱动器 IC 上,通常电源、接地和输出引脚均连接至铜区域。

图 8 所示为“倒装芯片引线框架”SOIC 封装的典型 PCB 布局。引脚 2 为器件电源引脚。请注意,铜区域置于顶层器件的附近,同时几个热通孔将该区域连接至 PCB 背面的铜层。引脚 4 为接地引脚,并连接至表层的接地覆铜区。引脚 3(器件输出)也被路由至较大的铜区域。

请注意,SMT 板上没有热风焊盘;它们牢牢地连接至铜区域。这对实现良好的热性能至关重要。

2

QFN 和 TSSOP 封装

TSSOP 封装为长方形,并使用两排引脚。电机驱动器 IC 的 TSSOP 封装通常在封装底部带有一个较大的外露板,用于排除器件中的热量(图9)。

TSSOP 封装通常在底部带有一个较大的外露板,用于排除热量。

QFN 封装为无引线封装,在器件外缘周围带有板,器件底部中央还带有一个更大的板(图 10)。这个更大的板用于吸收芯片中的热量。

为排除这些封装中的热量,外露板必须进行良好的焊接。外露板通常为接地电位,因此可以接入 PCB 接地层。

在理想情况下,热通孔直接位于板区域。在图11的 TSSOP 封装的示例中,采用了一个 18 通孔阵列,钻孔直径为 0.38 mm。该通孔阵列的计算热阻约为 7.7°C/W。

通常,这些热通孔使用 0.4 mm 及更小的钻孔直径,以防止出现渗锡。如果 SMT 工艺要求使用更小的孔径,则应增加孔数,以尽可能保持较低的整体热阻。

除了位于板区域的通孔,IC 主体外部区域也设有热通孔。在 TSSOP 封装中,铜区域可延伸至封装末端之外,这为器件中的热量穿过顶部的铜层提供了另一种途径。

QFN 器件封装边缘四周的板避免在顶部使用铜层吸收热量。必须使用热通孔将热量驱散至内层或 PCB 的底层。

倒装芯片 QFN 封装

倒装芯片 QFN (FCQFN) 封装与常规的 QFN 封装类似,但其芯片采取倒装的方式直接连接至器件底部的板上,而不是使用接合线连接至封装板上。这些板可以置于芯片上的发热功率器件的反面,因此它们通常以长条状而不是小板状布置(图13)。

这些封装在芯片的表面采用了多排铜凸点粘接至引线框架(图 14)。

小通孔可置于板区域内,类似于常规 QFN 封装。在带有电源和接地层的多层板上,通孔可直接将这些板连接至各层。在其他情况下,铜区域必须直接连接至板,以便将 IC 中的热量吸入较大的铜区域中。

图 15所示为 MPS 公司的功率级 IC---MP6540 产品的 PCB 布局。该器件具有较长的电源和接地板,以及三个输出口。请注意,该封装只有 4 × 4 mm 大小。

器件左侧的铜区域为功率输入口。这个较大的铜区域直接连接至器件的两个电源板。

三个输出板连接至器件右侧的铜区域。注意铜区域在退出板之后尽可能地扩展。这样可以充分将热量从板传递到环境空气中。

同时,注意器件右侧两个板中的数排小通孔。这些板均进行了接地,且 PCB 背面放置了一个实心接地层。这些通孔的直径为 0.46 mm,钻孔直径为 0.25 mm。通孔足够小,适合置于板区域内。

综上所述,为了使用电机驱动器 IC 实施成功的 PCB 设计,必须对 PCB 进行精心的布局。因此,本文提供了一些实用性的建议,以期望可以帮助 PCB 设计人员实现PCB板良好的电气和热性能。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • pcb
    pcb
    +关注

    关注

    4088

    文章

    20927

    浏览量

    377819
  • 华强pcb线路板打样

    关注

    4

    文章

    14637

    浏览量

    42360
收藏 人收藏

    评论

    相关推荐

    电机驱动器PCB布局准则,详细总结

    PCB 背面放置了一个实心接地层。这些通孔的直径为 0.46 mm,钻孔直径为 0.25 mm。通孔足够小,适合置于板区域内。综上所述,为了使用电机驱动器 IC 实施成功的 PCB 设计,必须对 PCB 进行精心的布局
    发表于 10-24 08:00

    全方位讲解步进电机驱动器原理知识

    电机驱动器原理知识【知识讲解】让更好的了解步进
    发表于 11-24 10:50 31次下载

    NCP51820 GaN 驱动器PCB 设计和布局

    驱动器PCB 设计和
    发表于 11-14 21:08 2次下载
    NCP51820 GaN <b>驱动器</b>、<b>PCB</b> 设计和<b>布局</b>

    PCB布局准则和操作技巧

    PCB布局准则和操作技巧   摘要: 
    发表于 11-18 09:19 2480次阅读

    步进驱动器说明书_步进电机驱动器怎么用_步进驱动器维修

    驱动器的原理以及接线图,但却还不知道如何实操,接下来就以ZHH-MC两相混合式步进电机驱动器为例,说说步进电机驱动器的使用说明书。
    发表于 08-15 09:22 3.8w次阅读
    步进<b>驱动器</b>说明书_步进<b>电机</b><b>驱动器</b>怎么用_步进<b>驱动器</b>维修

    mps电机驱动器pcb布局技巧

    电机驱动器 IC 设计 PCB 的一些一般性建议。此类 PCB 需要采用特殊的冷却技术,以解决功耗问题。
    的头像 发表于 11-16 10:41 1.1w次阅读

    典型封装的电机驱动器 IC,PCB如何布局

    电机驱动器 IC 设计PCB板提供了一些一般性建议,要求对 PCB 进行精心的布局以实现适当性能。在本文下篇中,将针对使用典型封装的电机驱动器 IC,提供一些具体的 PCB 布局建议。
    的头像 发表于 12-03 06:50 1.5w次阅读
    典型封装的<b>电机</b><b>驱动器</b> IC,<b>PCB</b>如何<b>布局</b>?

    电动驱动器的飘窗板设计应该怎样设计

    电机驱动器 IC 实施成功的 PCB 设计,必须对 PCB 进行精心的布局
    发表于 08-22 14:04 399次阅读

    步进电机和步进电机驱动器选型的九条准则

    电机及步进电机驱动器,挑选到最适宜自个运用恳求的步进电机和步进电机驱动器,特将有关选型准则介绍如下
    的头像 发表于 03-29 16:05 5664次阅读

    步进电机驱动器调速方法_步进电机驱动器的作用

    电机驱动器调速方法及步进电机驱动器的作用。
    发表于 04-20 09:10 9725次阅读

    电机驱动器是什么

    驱动器,但是驱动器是个整体的概念,简单的说驱动器驱动某类设备的驱动硬件。比如说电脑以及其他的工业设备或者是工具上,都会用到驱动器。本文重点介绍下驱动器是什么,以及电机驱动器是什么。
    发表于 05-19 15:26 2.7w次阅读

    如何计算电机驱动器的功耗?

    电机驱动器IC 1时,一个关键考虑因素是可通过该器件驱动的最大电流。器件和PCB的热性能常常限制了电机驱动器能够安全处理的电流。正因如此,在设计电机应用时,计算电机驱动器的总功耗至关重要。
    发表于 03-08 15:13 209次阅读
    如何计算<b>电机</b><b>驱动器</b>的功耗?

    电机驱动器IC的作用

    电机旋转(驱动电机)的集成电路(IC)通常被称为“电机驱动器IC”或“电机驱动IC”,在某些情况下还会被称为“电机驱动器”。市场上的电机驱动器IC种类非常多。
    发表于 03-13 09:17 939次阅读

    电机驱动器PCB布局设计

    电机驱动 IC 传递大量电流的同时也耗散了大量电能。通常,能量会耗散到印刷电路板(PCB)的铺铜区域。为保证PCB充分冷却,需要依靠特殊的PCB设计技术。 使用大面积铺铜! 铜是一种极好的导热
    的头像 发表于 08-30 10:03 374次阅读
    <b>电机</b><b>驱动器</b><b>PCB</b><b>布局</b>设计

    驱动器电机驱动器的概念

    驱动器,但是驱动器是个整体的概念,简单的说驱动器驱动某类设备的驱动硬件。比如说电脑以及其他的工业设备或者是工具上,都会用到驱动器。本文重点介绍下驱动器是什么,以及电机驱动器是什么。
    的头像 发表于 09-18 10:00 178次阅读