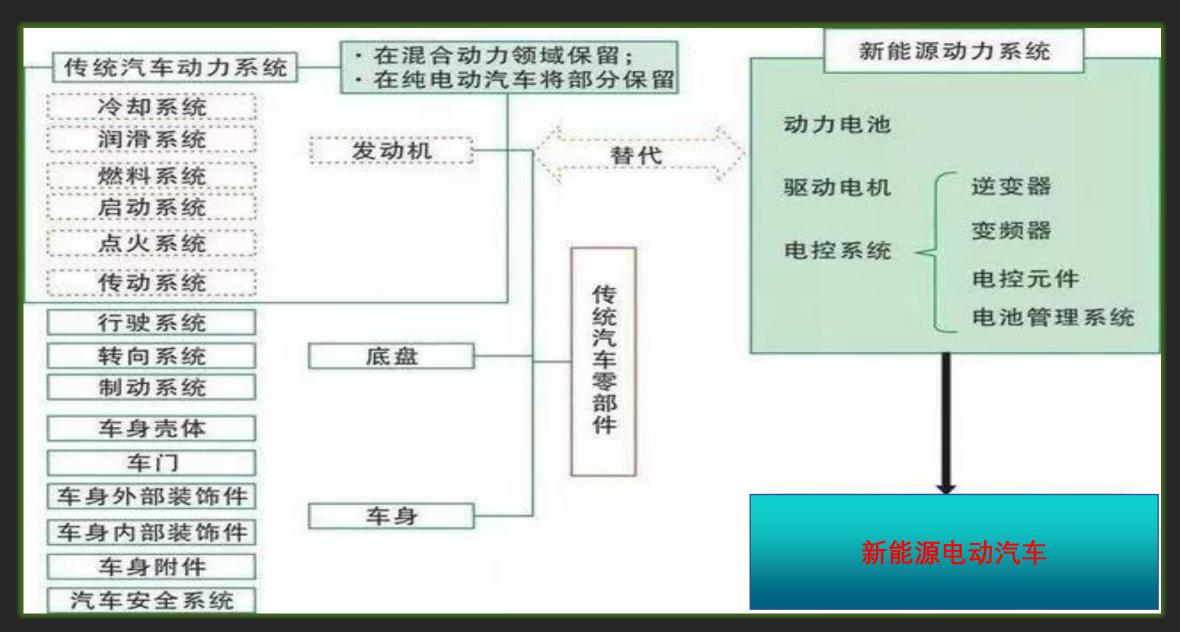
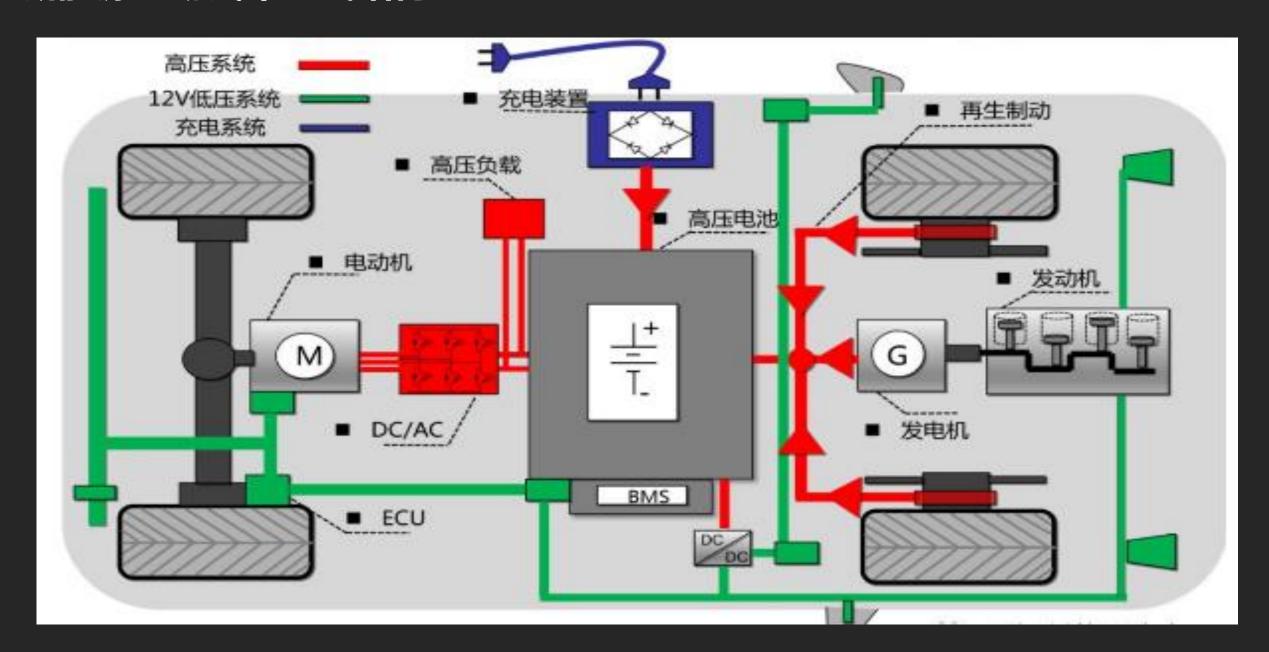


扫描二维码关注"艾德克斯电子"微信公众号,获取更多资讯!

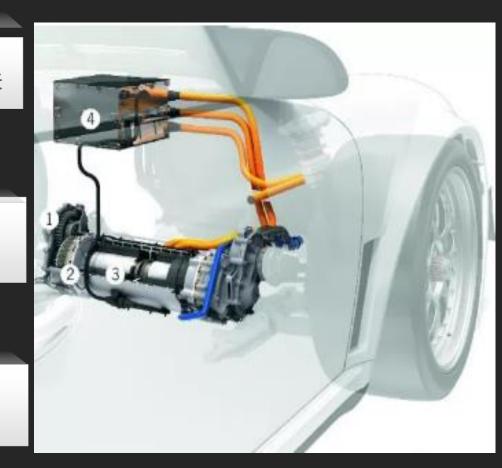
新能源汽车发展是国家战略


消费者对新能源汽车的认同程度在不断提高


新能源汽车是传统汽车产业的延伸

新能源电动汽车电气结构

电驱系统的组成



永磁同步电机、交流异步电机和开关 磁阻电机

逆变器

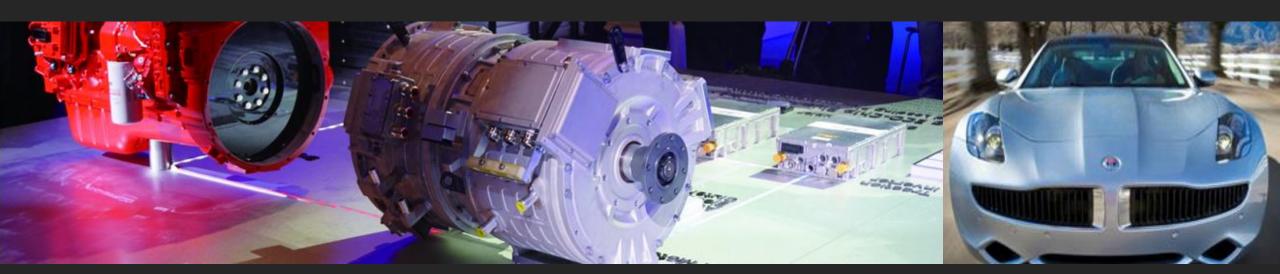
电压型逆变器、电流型逆变器

控制器及各种检测传感器

电驱系统

电驱系统的发展

TECH ITECH


第一代: 电机/控制器

第二代: 电机+控制器

第三代: 电机+控制器+减速器

- ◆ 高效率---高效区、工况循环效率;
- ◆ 高可靠性---设计、制造、测试;
- ◆ 高功率密度---高速、高集成度、新技术;
- ◆ 高安全性---网络摄, 信号绩, 功率级;
- ◆ 高舒适性---高速带载NVH;
- ◆ 低成本---标准化、规模化、新技术;

测试标准和依据

认证试验

Certification

GB/T18488.1-2015电动 汽车用驱动电机系统 第1部分: 技术要求

GB/T18488.2-2015电动 汽车用驱动电机系统 第2部分:试验方法

GB/T29307-2012电动汽 车电机系统可靠性试验 方法

GB/T18655-2018 电动汽车电机系统电磁兼容试验方法

研发验证试验

DV/PV tests

可以参考 GB/T 18488.1-2015、GB/T18488.2-2015、GB/T29307-2012

- ➤GB/T28046 (ISO16750)
- ►ISO 19453-2012

QC/T413-2002 汽车电气 设备基本技术条件

QC/T xxx 电驱动系统噪声测试、EMC测试、一体化集成总成测试、QC/T xxx 汽车级IGBT......

- ① 依据企业已有的专项标准
- ② 结合以下标准制定测试规范
- ③ 结合实际车辆工况制定可靠性加速试验方法

道路车辆电气及电子设备的环境条件和试验第1部分一般规定第2部分电气负荷第3部分机械负荷第4部分气候负荷第5部分:化学负荷

企业标准;

国际标准——

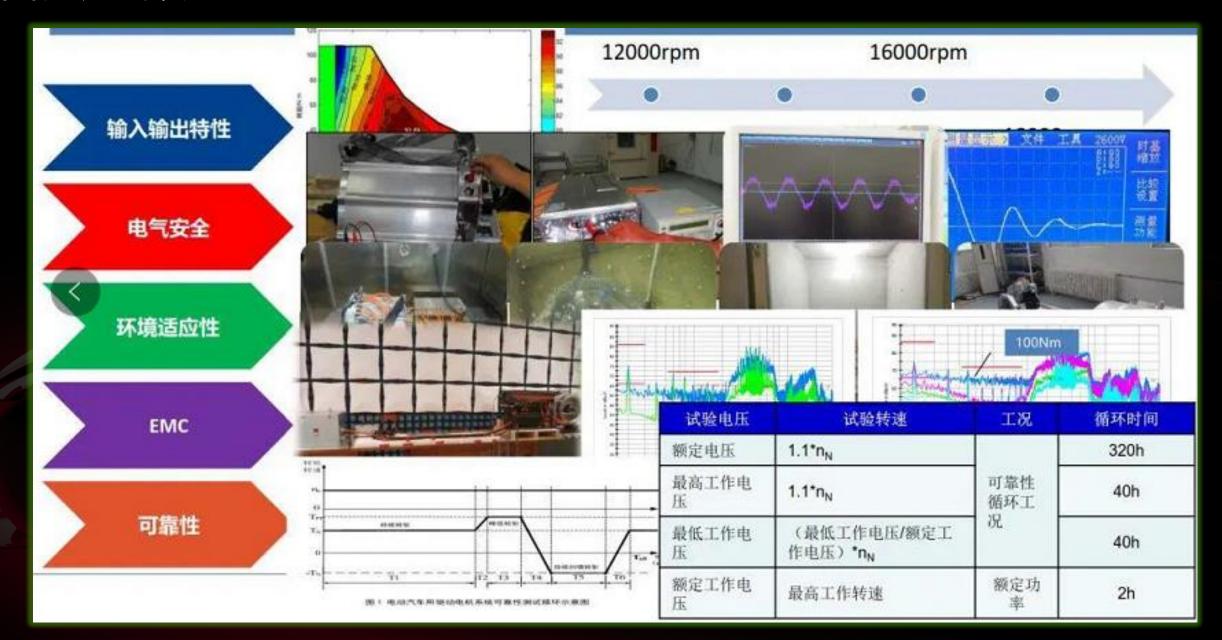
ECE R85 (欧);

VDA AK4.5 (德);

UL1004-1(美);

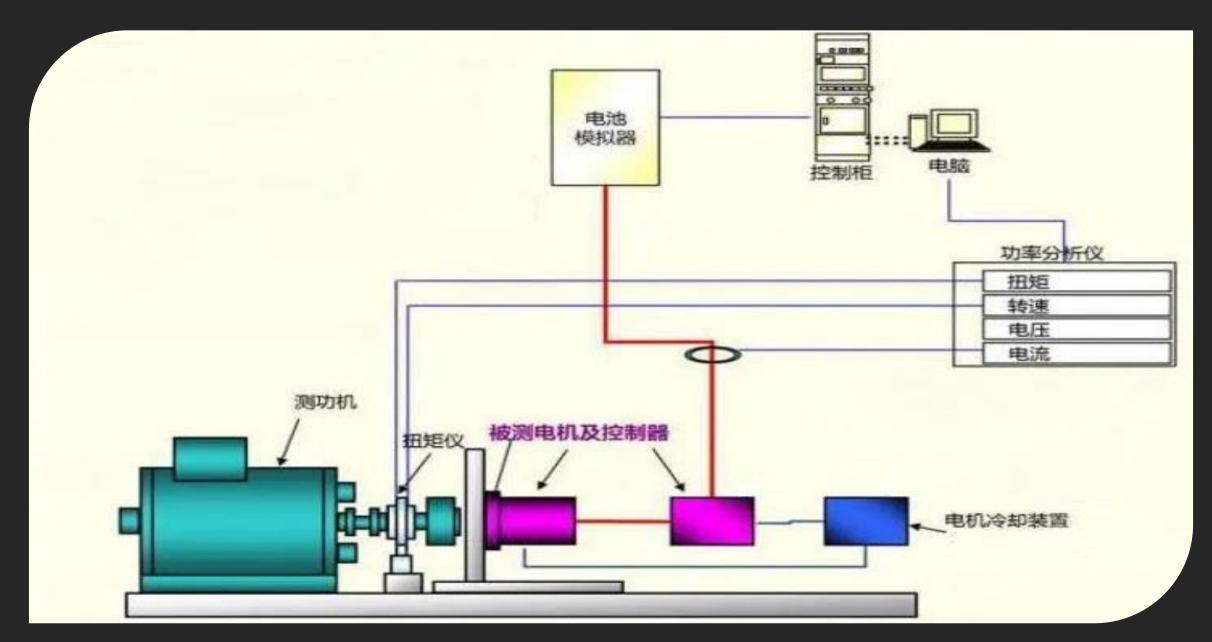
C-TRIAS_99-017/018-01(日);

- · QC/T 893-2011《电动汽车用驱动电机系统故障分类及判断》
- QC/T 896-2011《电动汽车用驱动电机系统接口》
- QC/T 1068-2017 电动汽车用异步驱动电机系统
- · QC/T 1069-2017 电动汽车用永磁同步驱动电机系统
- QC/T 1022-2015 纯电动乘用车用减速器总成技术条件
- QC/T 1086-2017 电动汽车用增程器技术条件
- QC/T 926-2013 轻型混合动力电动汽车 (ISG型) 用动力单元可靠性试验方法
- QC/T 568.1-2011 汽车机械式变速器总成台架试验方法 第1部分: 微型
- QC/T 29063.1-2011 汽车机械式变速器总成技术条件第1部分: 微型


新能源汽车测试解决方案

地区	测试法规	测试项目		
中国	GB/T 29307-2012 电动汽车用驱动电机系统可靠性试验方法			
	QC/T 893-2011 电动汽车用驱动电机系统故障分类及判断	20名项 句话中机燃能 泡孔 电气空分和促拉功能		
	QC/T 896-2011 电动汽车用驱动电机系统接口	20多项,包括电机性能。温升、电气安全和保护功能、温度、振动、盐雾等环境适应性测试、可靠性测试、EMC测试		
	GB/T18488.1-2015 电动汽车用驱动电机系统 第1部分:技术条件			
	GB T18488.2-2015 电动汽车用驱动电机系统第2部分:试验方法			
欧洲	ECE R85 30min最大功率实验	具十功玄测计 20min 具十功玄类井		
PY (//1)	VDA AK4.5 设计六大类包括性能环境、可靠性等	最大功率测试、30min最大功率带载		
日本	C-TRIAS_99-017/018-01电机最高功率/额定功率实验	最大功率测试、1Hour额定功率、温升测试		
美国	UL1004-1旋转电机通用要求	30余项,包括电机性能、温升、电安全和保护功能、环境适应性;逆变器有专门标准。		
说明	1. 中国:测试项目较多,对整车企业和电机企业的技术开发、产品配套有指导作用。 2. 美国:测试项目更多,更关注安全、保护、环境适应性测试。非国家强制,可进行UL认证。 3.欧洲、日本:仅要求30min或60min最大功率,其余测试项目参照企业标准。			

国标测试项目


国标测试项目

一般性实验	输入输出特 性	安全性实验	环境适应性	电磁兼容性	可靠性
外尺质密定直绝耐观外是一个大大大学。	工作电压 范围 文学制度 验控制的心理的 证明的一种的一种。 证明的一种, 证明的一种。 证明的一种。 证明的一种, 证明的一, 证明的, 证明的, 证明的, 证明的, 证明的, 证明的, 证明的, 证明的	■控制器保护功能 ■安全接地检查 ■控制器支撑电容放电时间	低温实验 高温实验 加械振动 阶水防尘 量 盐雾	■带载工作 状态下的电 磁骚扰和抗 扰 ■GB/T36282 -2018	■402小时 可靠性实 验 ■GB/T293 07

电动汽车驱动系统测试平台

直接使用动力电池测试

痛点

A 无法随时改变电池SOC,放电深度,开路电压,内阻等条件;

B 无法快速验证待测设备在不同电池条件下的响应;

C 测试效率低;

D 无法达到预期的效果;

你需要1台电池模拟器

高速动态响应特性

电流≤2ms

内建多种电池模型

支持快速选择电池模型、设 定电池电压、容量、内阻等 参数

具有较强的过载能力

高精度、高可靠性

案例1. 发动机启动电源

模拟铅酸电池,用于发动机试验时发动机起动,以及发动机起动试验。

序号	参数名称	A型号(15套)	B型号(4套)
1	应用机型	A样机	B样机
2	交流输入电压 (V)	38	30
3	直流输出电压 (V)	8-28	/可调
4	直流输出电流 (A)	≥2000	≥1200
5	瞬间过载电流 (A)	≥2600	≥1500
6	马达起动时输出电压(V)	18≤輸出电压≤26 (DC24V輸出))8≤輸出电压≤13(DC12V输出
7	电池内阻模拟(铅酸电池)	可以调节(内阻可调节	·范围覆盖2-20毫欧)
8	带载输出纹波电压 (mV)	≤ 0	300
9	开路电压输出稳定度要求	≤1%*当前	前 输出电压
10	可靠性要求	连续无故障运行时	村间大于10000h。
11	能量回馈要求	能量可回馈电网可自动吸	收负载端产生的反向能量

案例2. 250KW电动汽车驱动系统测试方案

IT6252C-1500-720 +BSS2000PRO 研发认证测试

本套试验台选配ITECH 双向大功率直流电源IT6252C-1500-720 搭配BSS2000PRO专业版电池模拟软件模拟动力电池作为前端输入电源,试验台由AVL负责系统集成。

耐环境测试

温升试验

系统标定和验证

可靠性测试

可靠度试验

耐久试验

车辆工况模拟验证试验

性能标定

堵转转矩 转矩-转速特性

最高工作转速

动力系统效率

峰值/特续功率

工作电压范围

电机控制器工作电流

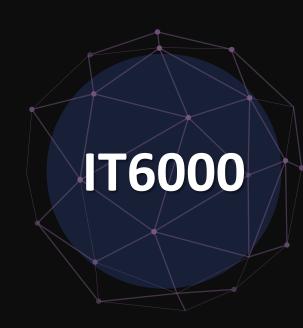
响应时间

控制精度

3大

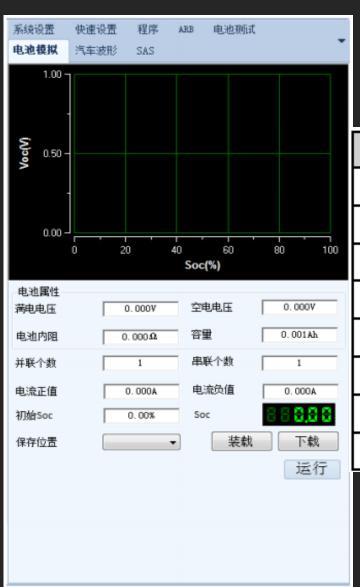
一次满足您所有需求!

大系列



反馈式源载系统

大功率可编程直流电源


IT6000C

双向可编程直流电源

- LIST功能
- ・ CC&CV优先权
- ・汽车电子波形
- 电池充放电测试
- ・・・电池模拟器
- 光伏曲线模拟

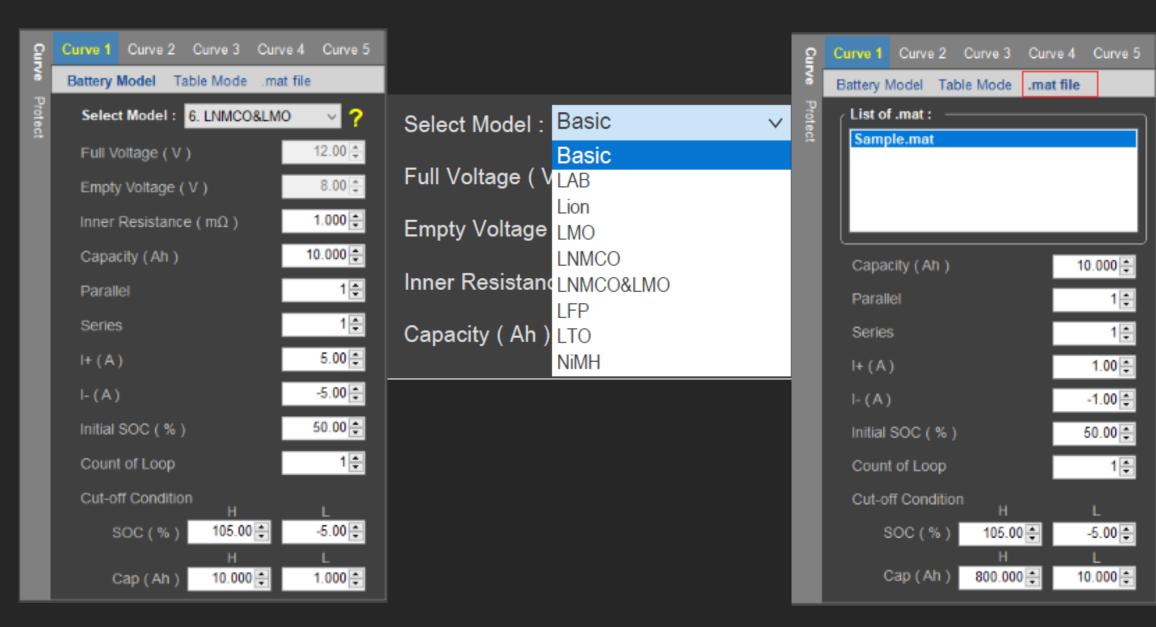
IT6000C 电池模拟器



参数	说明
满电电压	模拟单节电池满电状态时的电压值。
空电电压	模拟单节电池空电状态时的电压值。
电池内阻	模拟单节电池的内阻值。
容量	模拟单节电池的容量。
并联个数	模拟电池并联个数的设置。
串联个数	模拟电池串联个数的设置。
电流正值	正电流限制值,模拟电池组最大放电电流。
电流负值	负电流限制值,模拟电池组最大充电电流。

BSS2000 电池模拟器

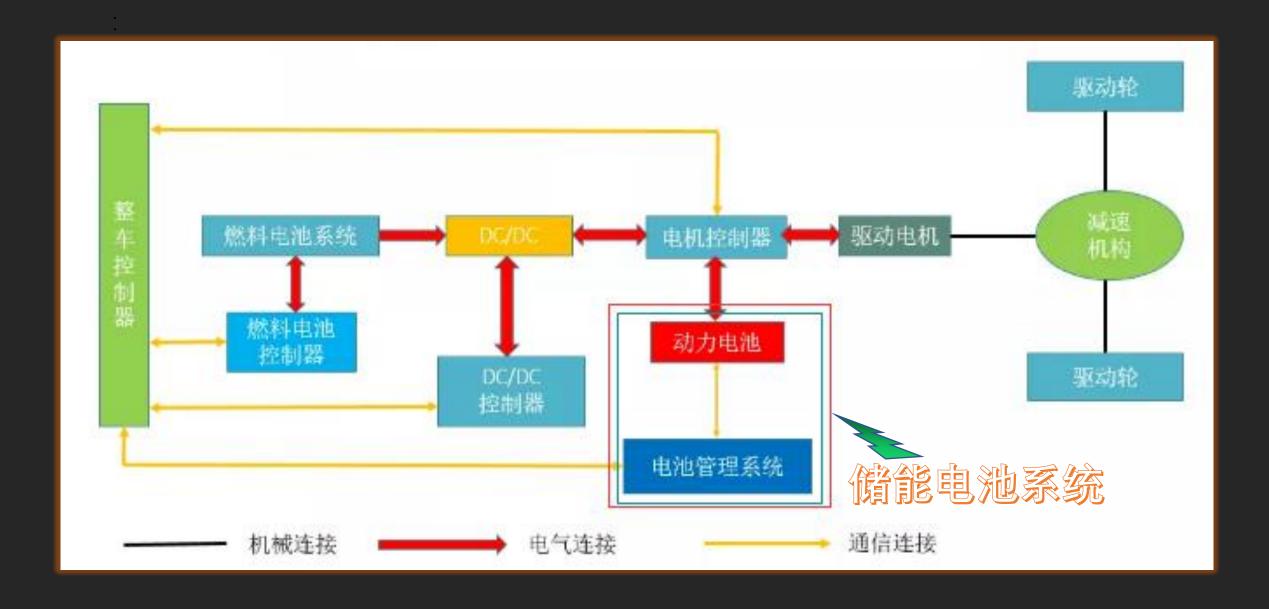
BSS2000电池模拟器


01 常用电池参数设定与功能模拟

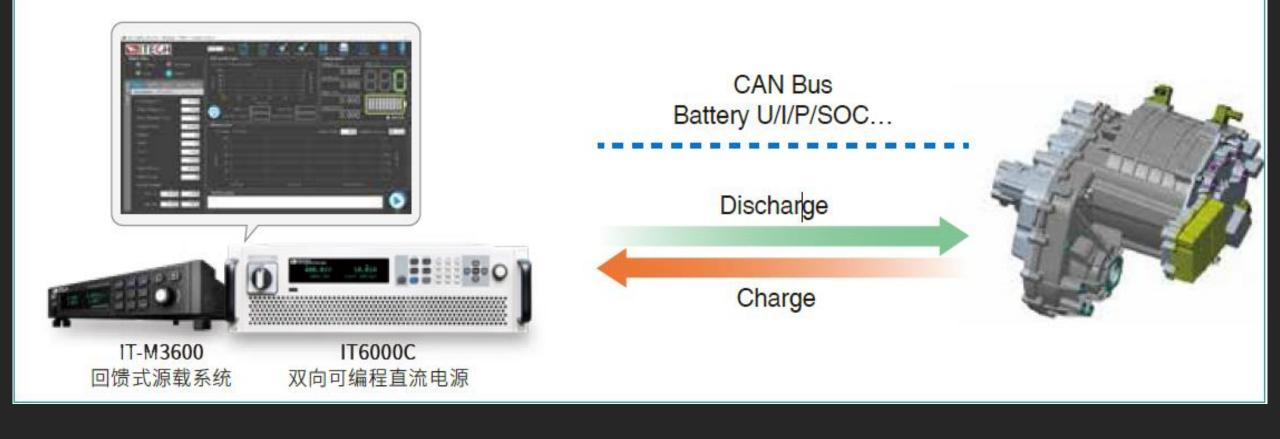
Full Voltage (V)	12.00
Empty Voltage (V)	8.00
Inner Resistance (mΩ)	1.0
Capacity (Ah)	10.000
Parallel	1
Series	1
I+ (A)	5.00
I- (A)	-5.00
Initial SOC (%)	90.00

2)	电池模拟器保护参	数设置			
	SOC Protection				
	SOC HIGH ALARM	110.00 🛊 %			
	SOC HIGH WARNING	105.00 🛊 %			
	SOC LOW WARNING	-5.00 ♣ %			
	SOC LOW ALARM	-10.00 ♣ %			
	OCV Protection				
	OCV HIGH ALARM	50.00 ♣ V			
	OCV HIGH WARNING	12.00 ♣ V			
	OCV LOW WARNING	7.00 V			
	OCV LOW ALARM	6.00 V			

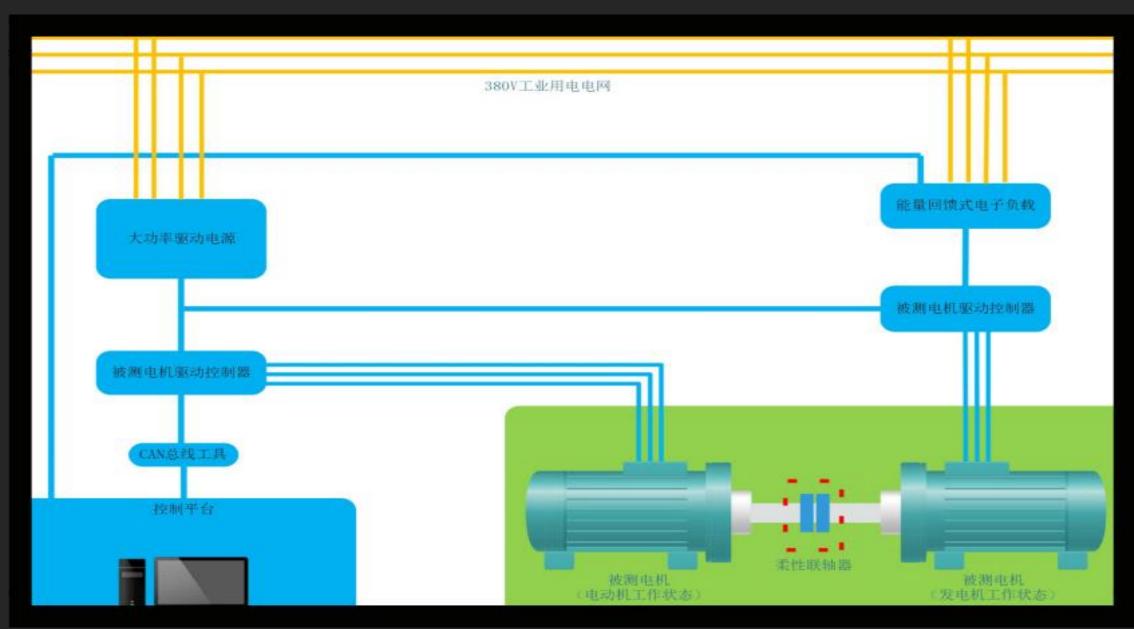
内置多种电池模型/支持.mat文件导入功能


测试台架

案例3. 氢燃料电动汽车储能电池模拟



BMS协议自定义功能



BSS2000 Pro 电池模拟器不仅能够模拟电池包,同时提供电池管理系统(BMS)的模拟功能,用户可自定义 BMS 协议,匹配不同场合的应用,实现与外部控制单元的 CAN 交互。BSS2000 Pro 在仿真整个动力电池系统(电池 +BMS)过程中,可定时上报电池模拟器的实际电压,电流及剩余容量等关键指标,以便外部待测物对电池模拟器不同状态作出及时响应。

直流电机对拖测试

Hello, IT

000系列

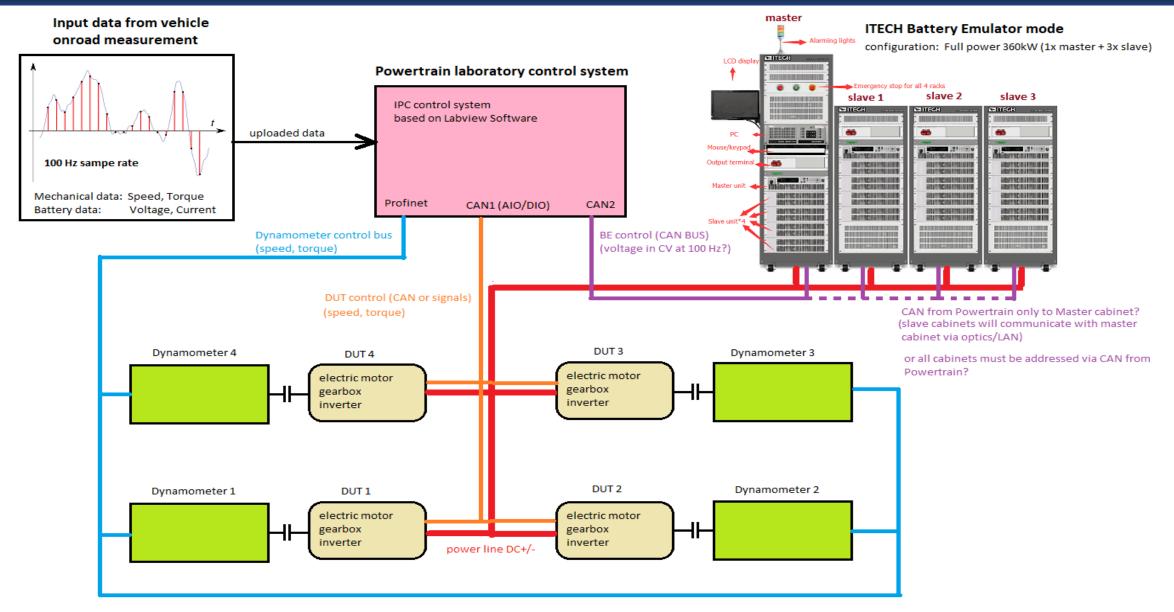
回馈式 直流电子负载

IT8000回馈式电子负载

并网电量 累计功能

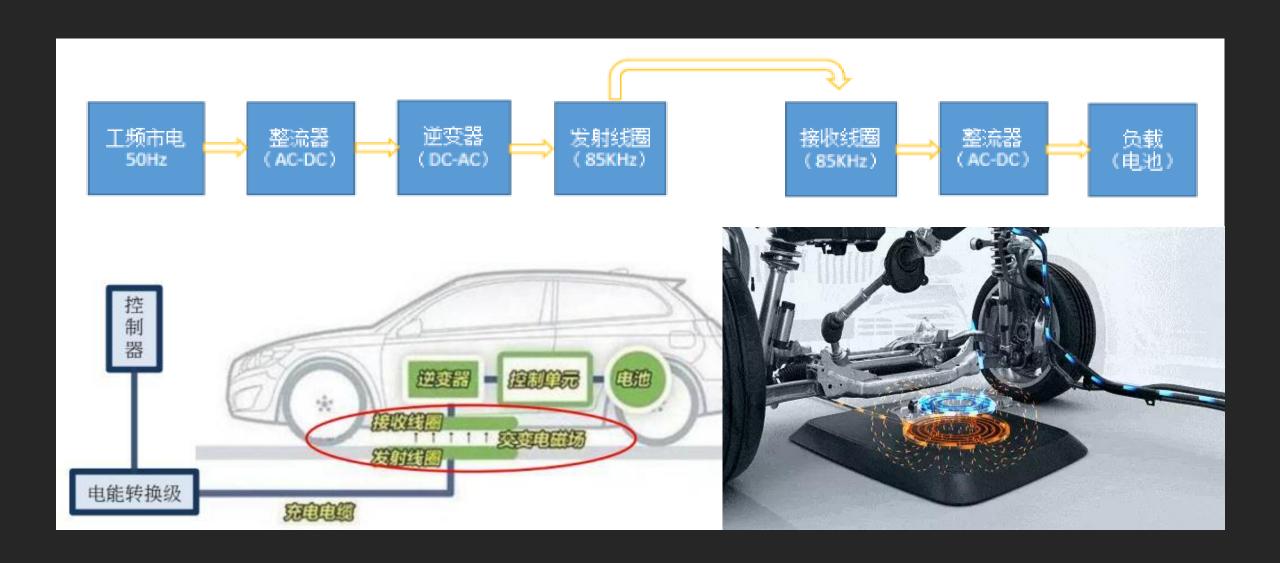
完善 保护功能

主从并联 主动均流 105KW或以上

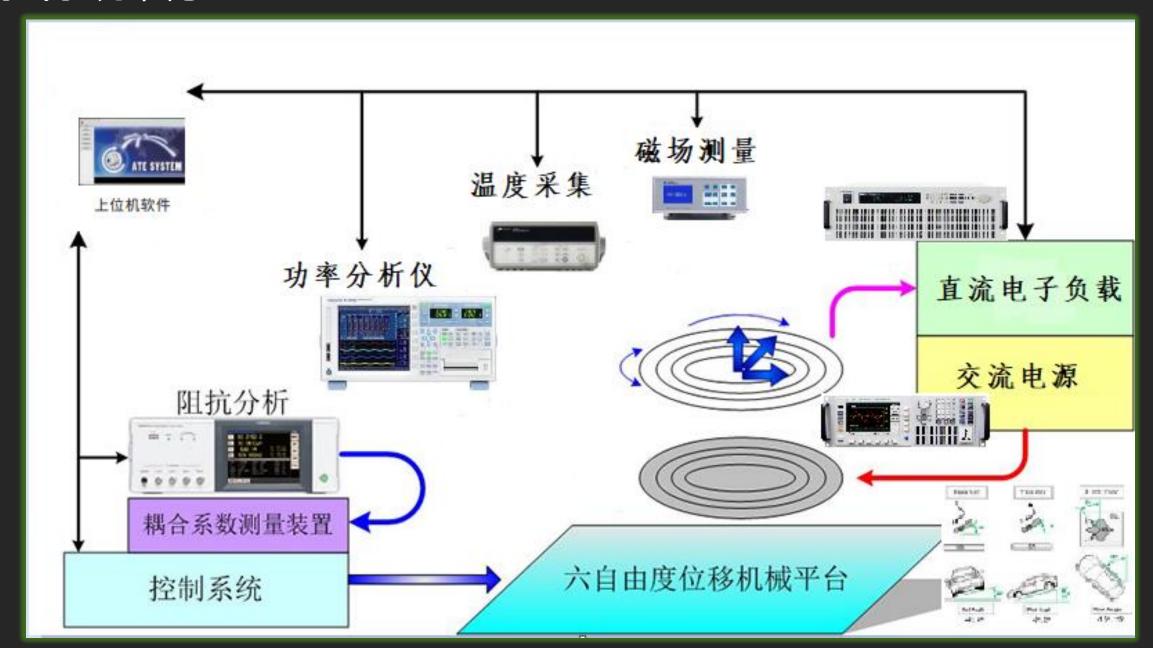

电网状态 自动检测

标配全面 通信接口

案例4. 动力电池充放电&MCU测试



11KW电动汽车无线充电



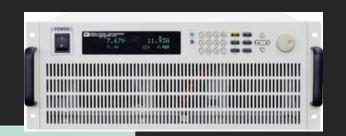
无线充电动态测试方案随着手机无线充电成为现实,正式走进人们的生活,汽车无线充电在不久的将来也将普及。

测试系统架构

测试项目

测试大项	输入测试	输出测试	稳定性测试	保护功能	效率与错位距离测试	特殊测试
执行标准	SAEJ17727	QC/T895	QC/T895		SAEJ2954	SAEJ2954
	电流有效值					
	有功功率	输出电压				
	功率因数	输出电流				
	骤降/断电测试	输出功率	电压稳定度	过电流保护	X轴错位距离效率量测	高频模块特性测试
测试项目	电压/频率缓升	电压峰峰值	负载稳定度	过压保护	X轴错位距离效率量测	磁场强度测试
	缓降测试	电压有效值		短路保护	Goi1距离效率量测	待测物表面温度测
	总谐波失真	过冲电压				试
	电源失真模拟					

ITECH 解决方案


一次测发 射器输入 特性测试

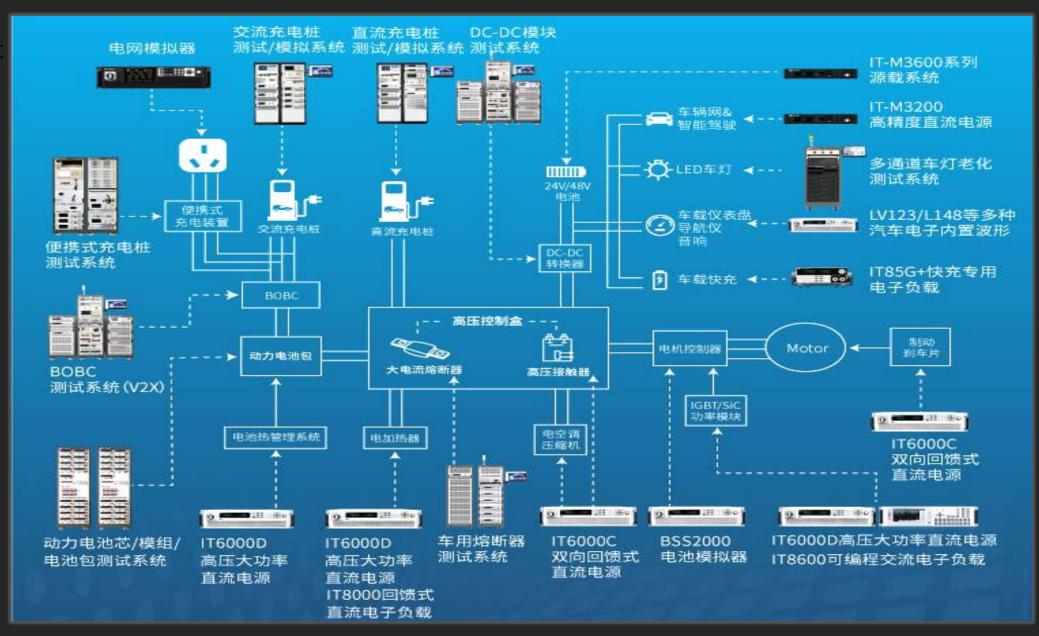
IT9121

功率分析仪

IT7600

高性能可编程 交流源 二次测接 受器输出 特性测试

IT8900A/E


可编程直流电子负 载

电池模拟器

新能源&汽车电子方案

