0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动

完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>

3天内不再提示

锂-固态电解质界面如何与堆叠压力演变相关

锂电联盟会长 来源:能源学人 2023-04-13 10:38 次阅读

第一作者:Chanhee Lee

通讯作者:Matthew T. McDowell

通讯单位:美国佐治亚理工学院

由于使用锂(Li)金属作为负极的潜力,固态电池(SSB)吸引了越来越多研究者的兴趣。各种高性能固态电解质(SSE),包括聚合物、硫化物和氧化物的发现加速了SSB的发展。在无机SSE中,硫化物因其高离子电导率和相对易于加工而被认为是有前途的。尽管取得了这些进展,但许多挑战阻碍了锂负极与硫化物SSE的使用。首先,锂金属丝(也称为枝晶或突起)可以在充电过程中生长以机械穿透SSE颗粒,导致短路和电池故障。SSE内的缺陷,例如孔隙、晶界和裂纹,会影响或加剧锂丝的生长。其次,许多硫化物SSE在与锂接触时在热力学上不稳定,导致形成与纯SSE不同的结构、化学和传输特性的“界面”。

除了这些挑战之外,施加到SSB的堆叠压力在决定其性能方面起着至关重要的作用。高堆叠压力可以导致锂和SSE之间均匀的界面接触,但同时也会导致机械变形并使锂通过SSE颗粒内的微孔,从而导致短路。如果堆叠压力太低,界面接触不充分,则会导致脱锂过程中形成界面空隙。由于活性材料体积的变化,电池堆叠压力也可能随着循环而变化,这意味着电池内的实际电池堆叠压力可能与最初施加的压力不同。此外,对SSE的加工参数和密度如何影响SSB与锂循环过程中的动态压力缺乏了解。因此,有必要研究退化和失效机制及其与堆叠压力实时演变的相关性。

【成果简介】

鉴于此,美国佐治亚理工学院的Matthew T. McDowell教授等人通过将堆叠压力的测量与电化学相关联,研究了基于两种不同代表性SSE(Li10SnP2S12和Li6PS5Cl)的锂对称电池的界面动力学。这些材料通过界面形成或锂丝生长表现出不同的降解机制。研究发现堆叠压力的演变高度依赖于与锂接触的SSE的化学稳定性,并且界面的形成导致电池运作过程中堆叠压力的降低。锂细丝的生长显示出不同的堆叠压力特征,这取决于SSE的加工参数和密度。这项工作提供了对这些材料界面演变的新理解,并证明了电化学机械测量对于促进对SSB的理解的价值。

【核心内容】

具有集成力传感器的定制固态电池组件如图1a所示。通过在不同压力下压缩SSE粉末以形成压实的颗粒,然后将锂箔附着在颗粒的两侧,将具有锂对称电池组装在聚醚醚酮(PEEK)模具内。将电池堆放置在力传感器上,并通过拧紧图1a中电池组件顶部的四个螺母单轴压至所需的初始电池堆叠压力,然后在电化学循环过程中使用力传感器测量电池堆叠压力变化。研究中使用了两种不同的SSE材料:Li10SnP2S12(LSPS)和Li6PS5Cl (LPSC)。其中,LSPS能够形成一个厚的中间相,限制锂丝的生长,而LPSC则形成一个薄且钝化的中间相,允许锂丝生长(图1a)。

为了了解开路条件下堆叠压力的演变,图1b显示了两种包含LSPS和LPSC的不同对称电池的堆叠压力分布和堆叠压力的时间导数。两个电池的初始堆叠压力均为30 MPa,LSPS电池的堆叠压力在20小时实验中降至24.8 MPa(红色),而LPSC电池仅降至27.6 MPa(蓝色)。这些电池在开路时的堆压降低是由于:(1)电池组件的松弛,(2)SSE随着时间的变形,(3)锂金属的塑性变形和流动,以及(4)形成化学中间相。通过分析实验中每3小时收集得到的电化学阻抗谱(EIS)数据,可以进一步了解界面的形成(图1c、d)。LSPS电池的总电阻在开路18小时后从47.9 Ω cm-2增加到147.6 Ω cm-2,而LPSC电池的总电阻相对恒定,表明LSPS中的中间相的形成导致了阻抗的增长。

pYYBAGQ3a4yAE3yXAAGmFKAe5E4180.jpg

图1. (a)固态电池组件的示意图(左)以及基于Li10SnP2S12(LSPS)和Li6PS5Cl(LPSC)的对称电池(右)的不同降解机制的说明。(b)基于LSPS(红色)和LPSC(蓝色)的两个不同对称电池在加压到30 MPa的初始堆叠压力并保持在开路状态下的堆叠压力演变。(c)LSPS(红色)和LPSC(蓝色)电池保持开路状态下的总电阻随时间变化的图。(d)在(b)中的开路保持期间,每个电池每隔3小时测量得到的电化学阻抗谱。(b-d)中使用的所有颗粒在制备过程中均以125 MPa压实。

为了研究LSPS对称电池中堆叠压力演变与电化学之间的关系,使电池在开路状态保持10小时后在0.5 mA cm-2的电流密度下进行充放电。图2a显示了来自对称式LSPS电池的电压曲线以及测量的堆叠压力曲线(实线)。图2a还显示了具有相同数量Li的LSPS电池保持在开路状态下的堆叠压力数据(虚线),以进行比较。在最初的10小时开路保持期间,两个电池都显示出类似的堆叠压力下降。然而,在施加电流后,与保持在开路状态的电池相比,在接下来的约21小时内,电池堆叠压力以更快的速度下降。大约31小时后,施加电流的电池的电压迅速极化到1 V。随着这种极化的发生,堆叠压力曲线的斜率降低,并再次变得与保持开路的电池相似。图2b显示了通过EIS从每个电池中测量的总电阻。在开路保持10小时后,两个电池的阻抗几乎相同,但是当电流施加到一个电池时,总电阻开始发散。随着所施加电流电池的电压极化到1 V,总电阻显著增加。

相关的电化学堆叠压力演变可分为三个部分,如图2b所示。当两个电池都处于开路(第1部分)时,它们表现出相同的堆叠压力降低和总电阻增加。在施加电流时(第2部分),由于电化学界面的形成,堆叠压力下降得更快,导致阻抗增加。图2c中充放电后的电池阴极界面的横截面SEM图像显示界面厚度约为350 μm,比图1b中保持在开路处的电池厚得多。图2d中的SEM图像突出了中间相与原始LSPS形貌的差异。在阻抗/堆叠压力演变的第3部分(图2b),电池极化大幅增加,堆叠压力的降低趋于稳定(图2a)。这个过程可能主要是由于空隙形成引起的接触损失和由于实验过程中大量锂穿透导致的锂金属局部耗尽而引起的。

pYYBAGQ3a6qAfTakAAKJ9kJSJuw574.jpg

图2. (a)两个LSPS对称电池的电压曲线(红色)和堆叠压力曲线(蓝色)。其中一个电池在开路保持10小时后在0.5 mA cm-2下充放电(实线),另一个电池在整个实验中保持开路(虚线)。(b)从EIS数据中提取的施加电流的电池(蓝色)和保持开路的电池(黑色)的总电阻随时间变化的图。(c)使用二次电子(SE)检测器(左)和背散射电子(BSE)检测器(右),在施加电流的情况下,来自电池的阴极锂电极和LSPS的横截面SEM图像。(d)电池中反应的中间相(左)和未反应的LSPS(右)之间边界的放大SEM图像。

作者进一步研究了不同初始堆压强度对LSPS对称电池中堆压/电化学演变的影响(图3)。在这些实验中,0.5 mA cm-2的电流密度被间歇施加3小时,电流周期之间保持3小时开路。图3a、c显示了施加30 MPa堆叠压力时两个电池的电压曲线、堆叠压力演变和总电阻,其中一个间歇性地施加电流,另一个保持开路。图3a、c中的结果显示出与图2类似的行为,其中由于电化学界面的形成,堆叠压力显著降低,最终导致影响极化的接触面积的减少。与这种行为相反,具有较低初始堆叠压力(5 MPa)的LSPS对称电池在间歇电流应用期间显示出立即的极化,而堆叠压力与保持开路的相同电池没有显著偏差(图3b、d)。立即的极化可能是由于界面接触不良,因为较低的堆叠压力无法使Li变形以产生足够的界面接触。不良的界面接触导致高度局部化的电流和在接触点处形成界面,这将导致极化增加。在前3小时开路期间,电池的初始堆压降约为0.6 MPa(图3b),远小于施加30 MPa堆压时(图2a)。图3e、f中示意性地说明了具有高和低堆叠压力的不同界面演化场景。

poYBAGQ3bCSAJp9VAAGKUFtbDBc676.jpg

图3. (a)来自两个LSPS对称电池的电压曲线(红色)和堆叠压力曲线(蓝色),初始堆叠压力为30 MPa。一个电池施加间歇电流(实线)3小时,然后开路保持3小时。另一个电池保持开路(虚线)。(b)来自两个LSPS对称电池的电压曲线(红色)和堆叠压力曲线(蓝色),初始堆叠压力为5 MPa。一个电池施加间歇电流(实线),另一个保持开路(虚线)。(c,d)对于具有30 MPa堆叠压力(c)的两个电池和具有5 MPa堆叠压力(d)的两个电池,从EIS中提取的总电阻的演变。(e,f)Li/LSPS界面示意图,显示了在(e)30 MPa的较高堆压和(f)5 MPa的较低堆压下的不同接触条件。

图4a显示了在30 MPa的初始堆叠压力下,两种带有LPSC颗粒的不同电池的电压和电池堆叠压力曲线。在125 MPa(实线)下制造的颗粒在短路前仅支持锂沉积3.67 小时(1.84 mAh cm-2)。相比之下,更高度压缩的颗粒(250 MPa,虚线)在短路前支持锂沉积18.8 小时(9.41 mAh cm-2),这种短路时间差异在多个电池中始终存在。因此,在相同的初始堆叠压力下,制造载荷在影响LPSC电池寿命和短路行为方面起着重要作用。在较低压力下制造的颗粒的堆叠压力下降得更快,这可能是由于锂细丝生长填充了密度较低的SSE中预先存在的孔隙,导致电池堆叠压力下降得更快。

图4b比较了LPSC制造载荷的类似实验,但初始堆叠压力较低,为15 MPa。与图4a中所示的更高堆叠压力下的电池相比,该图中的两个电池(LPSC在125或250 MPa下制造)在0.5 mA cm-2下的电沉积时间分别是125 MPa为9.6小时,250 MPa为27 小时。这表明15 MPa的堆压足以促进界面处的良好接触,同时避免在初始施加堆压时Li机械挤压到颗粒的孔隙中。图4b还表明,在不同制造载荷下制造的颗粒可能表现出不同的失效机制。图4c(顶部)显示了来自图4b中的电池(15 MPa初始堆叠压力和125 MPa制造载荷)的电镀锂的横截面SEM图像,在底部的图片表明测试之前具有原始的界面。电镀后锂电极变厚,并且在Li/LPSC界面处可能存在不均匀生长的证据,如图4d中的放大图像所示。图4d中的SEM图像显示了中间相形成的证据,作为中间对比度区域,厚度为几微米,比LSPS薄得多。这些区域围绕着电镀的锂金属,这意味着中间相的形成伴随着锂的沉积。

poYBAGQ3bAmAPUFzAAHFTuj8olo805.jpg

图4.(a,b)初始堆叠压力为(a)30 MPa和(b)15 MPa的四个LPSC电池的电压曲线(红色)和堆叠压力演变(蓝色),以及堆叠压力曲线。(c)来自图(b)中实验的阴极锂电极的宽区域的横截面SEM图像,其中对在125 MPa下制备的颗粒施加15 MPa的堆叠压力(顶部)。底部图像显示了电镀前的原始锂电极,该电极来自在125 MPa下制造的样品。(d)为(c)中红框的放大SEM图像,包括SE(顶部)和BSE(底部)图像。

作者通过电化学机械研究揭示了这两种固态电解质材料的不同界面行为如何与堆叠压力演变相关,并且发现界面形成和锂电镀之间的平衡是其中的关键。由于界面组分的电子传导性,LSPS能够连续形成界面。基于LSPS的对称电池主要问题是电极界面而不是锂电镀(图5a)。另一方面,LPSC容易形成更薄的中间相,由于其电绝缘特性而自钝化,并且可能同时发生不均匀的锂电镀(图5b)。LSPS中界面相的持续形成导致电池的相对较大的体积减小,这转化为电池内压力的加速降低,这也受到锂变形和其他过程的影响。

相比之下,基于LPSC的电池中的堆叠压力主要受锂丝生长的性质和锂生长的开放微孔的可用性的影响。两种不同材料中的这些不同影响导致不同程度的堆叠压力降低,因此堆叠压力的动态跟踪是一种强大的诊断工具,可以深入了解这些现象。未来对不同SSE材料、电极材料/结构和全电池的组合堆压力/电化学演化的研究是建立对SSB行为(包括界面不稳定性)的更好理解的有希望的途径。此外,这种原位堆叠压力测量可用作诊断工具,可以用于早期检测运作中的电池单元内的退化或故障。

poYBAGQ3a_SAEwB5AADQrLZDPXM035.jpg

图5. 示意图显示了从实验中确定的(a)LSPS和(b)LPSC的整体行为机理。垂直箭头表示电池运行期间电池堆叠压力降低的相对幅度。

【总结】

研究结果表明,在保持开路和施加电流期间,堆压降低的程度可能受到多种因素的影响,包括锂变形、SSE孔隙率、中间相形成和时间相关的其他电池成分的变形。作者的研究证明在对称电池中使用两种不同的SSE材料时施加的电流对电池堆叠压力的影响,这提供了对连接电化学和电池堆叠压力的可能机制的深入了解。为了进一步理解和清楚地区分这些机械现象,在未来的工作中,可通过额外的表征实验(例如X射线断层扫描)将测量的堆叠压力演变与电池内部组件的演变直接联系起来。





审核编辑:刘清

  • SEM
    SEM
    +关注

    关注

    0

    文章

    61

    浏览量

    14087
  • 力传感器
    +关注

    关注

    0

    文章

    99

    浏览量

    14281
  • 固态电池
    +关注

    关注

    7

    文章

    443

    浏览量

    25559
  • 固态电解质
    +关注

    关注

    0

    文章

    39

    浏览量

    4837
收藏 人收藏

    评论

    相关推荐

    我想自己测试电解质

    市场上有没有一种两极板分开的电容传感器?我想自己测试电解质
    发表于 03-09 10:57

    超薄电解质电容器问世 手机可迎袖珍化时代

    的应用范围。美国莱斯大学(RiceUniversity)化学专业教授詹姆斯-托尔(JamesTour)日前就和自己的同事一道研发出了一款厚度比纸还要薄的电解质电容器产品sinosvo.c 。据悉,这一电解质
    发表于 09-24 16:51

    固体电解质的物理性质如何?

    固态的离子导体。有些具有接近、甚至超过熔盐的高的离子电导率和低的电导激活能,这些固体电解质常称为快离子导体(fast ion conductor;FIC)。
    发表于 09-17 09:10

    聚蠕虫状聚电解质刷的吸附

    聚(2-乙烯基吡啶)蠕虫状聚电解质刷的吸附 - 应用简报
    发表于 10-24 13:04

    血气分析仪_电解质分析仪分类及原理

    电解质分析仪分类及原理电解质分析仪分类及原理电解质分析仪分类及原理
    发表于 01-15 16:16 2次下载

    金属表面预处理和电解液添加剂对锂电极表面的改性介绍

    极进行表面改性;采用新型有机溶剂、离子液体、聚合物电解质、玻璃态固体电解质、塑晶固体电解质电解质体系提高界面相容性;改进金属锂电极的制备工艺,如制备金属粉末多孔电极和电沉积锂电极、制备全固态薄膜锂电池以及利用
    发表于 10-11 11:20 7次下载

    12V胶状电解质电池充电电路

    12V胶状电解质电池充电电路
    发表于 01-10 12:00 574次阅读
    12V胶状<b>电解质</b>电池充电电路

    胶状电解质电池充电电路图

    胶状电解质电池充电电路图
    发表于 01-10 12:14 720次阅读
    胶状<b>电解质</b>电池充电电路图

    电池内的电解质是什么?

    电池内的电解质是什么 首先 同种反应物 用不同电解质 进行反应是不一样电解质 他干什么用呢?举个例子甲烷与氧气 原电池酸性电
    发表于 10-20 12:08 793次阅读

    电解质的作用是什么?

    电解质的作用是什么? 电解液 Electrolyte含有移动离子并起离子导电作用的液相或固相物质。  
    发表于 11-09 09:51 3497次阅读

    超晶格电解质材料

    超晶格电解质材料 西班牙研发人员开发出一种可有效地提高燃料电池效率的超晶格电解质材料,较当前的固体氧化物燃料电池可大大地降低
    发表于 11-10 14:54 595次阅读

    电解质湿敏元件

    电解质湿敏元件   利用潮解性盐类受潮后电阻发生变化制成的湿敏元件。最常用的是电解质氯化锂(LiCl)。从1938年顿蒙发明这种元件以来,在较长的使用实践中,对
    发表于 11-12 16:22 953次阅读

    日本研发新型硫化磷固体电解质

    日本研发新型硫化磷固体电解质   日本从事石油和石化业务的出光兴产公司于2010年3月8日宣布,正在加快开发固态锂离子电池用硫
    发表于 03-09 08:36 707次阅读

    这21种固态电解质可用于制造不可燃电池!!!!

    电解质在电池的正极和负极之间来回传输锂离子。液体电解质的价格便宜,离子的传导效果也非常好,但如果发生电池过热或因穿刺而短路时,可能导致起火 美国斯坦福大学(Stanford University)的研究人员利用人工智能(AI)技术,辨识出超过20种固态电解质,可望用于取代目前在电池中所使用的挥发性液体。
    发表于 01-12 01:04 1870次阅读

    宝马正研发固态电解质电池 但内燃机车仍是主流产品

    宝马正在研发新形态锂电池,用固态电解质来代替电解液,新型电池将在2025年实现量产。
    发表于 02-16 14:53 657次阅读

    固态电池中界面问题为何一直未能有效解决

    电解质由液态换成固体之后,锂电池体系由电极材料-电解液的固液界面向电极材料-固态电解质的固固界面转化。区别在于,固固之间无润湿性,其界面的更易形成更高接触电阻。
    的头像 发表于 04-06 09:17 1w次阅读
    全<b>固态</b>电池中<b>界面</b>问题为何一直未能有效解决

    锂离子在有机电解液、固态电解质以及离子液体电解质中是如何迁移的?

    直到目前为止,还没有一款完全理想的、适合于锂电池的电解质。如今最常用的还是有机电解液,因为其具有高的离子电导率和较宽的温度使用范围。
    的头像 发表于 04-13 09:57 2.4w次阅读
    锂离子在有机<b>电解</b>液、<b>固态</b><b>电解质</b>以及离子液体<b>电解质</b>中是如何迁移的?

    我国在固态锂电池界面问题上获突破,为未来固态电池制备提供了新的思路

    锂电池(LIB)在便携式电子设备,电动车等领域有着广泛的运用,但低能量密度和易漏、易燃等安全问题使得LIB难以满足当代需求。固态电池(SSB),使用更安全的固态电解质(SSE)取代液态有机电解质
    发表于 08-10 11:45 2942次阅读

    针对电池的安全性方面对固态电解质材料的研究分析

    硫电池由于具有高的理论能量密度而受到研究人员的广泛关注。向硫电池体系中引入固态电解质,不仅能抑制多硫化物的穿梭效应及其导致的库仑效率下降及容量衰减等问题,还能解决循环充放电过程中形成的枝晶导致
    的头像 发表于 09-04 09:10 4568次阅读

    金属电池复合固态电解质研究进展

    近年来,固态电解质因具有安全性高和防止枝晶生长等功能受到了研究者的广泛关注和研究。
    的头像 发表于 05-09 08:53 4282次阅读
    <b>锂</b>金属电池复合<b>固态</b><b>电解质</b>研究进展

    硫电池的产业化进程加速!Oxis建立硫电池电解质及正极材料工厂

    Oxis Energy签署了一份为期15年的租约用于建设工厂,将生产用于硫电池的正极和电解质的前体。
    的头像 发表于 06-26 16:44 4039次阅读
    <b>锂</b>硫电池的产业化进程加速!Oxis建立<b>锂</b>硫电池<b>电解质</b>及正极材料工厂

    固态聚合物锂电池中电解质的技术研究

    以及良好的界面接触,但其不能安全地用于金属体系、锂离子迁移数低、易泄漏、易挥发、易燃、安全性差等问题阻碍了锂电池的进一步发展。 而与液态电解质以及无机固态电解质相比,全固态聚合物电解质具有良好的安全性能、
    发表于 06-05 16:50 3572次阅读

    固态聚合物电解质可使锂离子电池能量密度翻倍

    澳大利亚迪肯大学(Deakin University)的研究人员表示,他们已经设法使用常见的工业聚合物来制造固体电解质,从而为固态锂电池能量密度翻倍打开了大门,这种固态锂电池在过热时不会爆炸或着火。
    的头像 发表于 11-28 09:55 2977次阅读

    日本固态电池新材料可解决固态电解质的选材问题

    关于固态电池的技术问题,现在主要就是在固态电解质,不用液态电解质固然降低电池重量和体积,可是固态材料的接触面积远不如前者,离子流动性也要逊色不少,困扰着很多相关的技术人员。
    的头像 发表于 12-30 17:06 2847次阅读

    NBL研究人员利用半固态电解质消除电解液泄漏从而改善锂电池安全性能

    安全问题一直以来都是阻碍锂电池的工业使用的障碍,因为锂电的高度易燃液体有机电解质容易泄漏,而且还依赖于热和机械不稳定的电极分离器。虽然固态电解质已经显示出改善锂电池安全性能的潜力,但它们的电极/电解质经常接触不良而且离子电导率有限,导致了固态锂电的性能低下。
    的头像 发表于 03-13 14:51 3040次阅读

    基于溶液制造固态电池电解质

    比起易燃的有机电解液,固态无机电解质本身不易燃;而且,用金属代替石墨作为负极,可使电池的能量密度大幅提升(高达10倍)。因此,固态电池有望成为电动汽车的突破性技术。
    的头像 发表于 03-23 16:40 1363次阅读

    固态电池电解质制造技术助力固态电池商业化

    据外媒报道,加州大学圣地亚哥分校材料科学家Ping Liu,以及马里兰大学和加州初创公司Liox Power研究人员,开发了一种制造固态电池电解质的新技术。在制造过程中,通过对溶液进行干燥,形成离子导电复合材料,这种材料可同时作为电解质和正极涂层。
    的头像 发表于 03-24 16:51 2015次阅读

    10微米厚的陶瓷电解质固态电池充电速度更快

    据外媒报道,Ion Storage Systems公司推出坚固、致密的陶瓷电解质。这种电解质只有10微米厚,与目前锂离子电池中使用的塑料隔板厚度相同;并且与当前的液体电解质一样,可以传导锂离子。
    的头像 发表于 03-24 16:56 3748次阅读

    科学家研发新型半固态电解质,通过重新构想的电池组件实现

    据外媒报道,当今的锂电池由阴极,阳极和液体电解质组成,该液体电解质在充电和放电时在锂离子之间来回传递。最近,科学家一直在研究电解质的更多固态形式可能带来什么,特别是在安全性方面。
    的头像 发表于 04-02 14:34 3493次阅读

    电池电解液和电解质的区别_电池电解液和电解质的两种形态

    电解质电解液不是一样的,电解液包含电解质,因为电解质固态,一般是指离子状态的物质,电解液溶解在液态溶剂中形成了电解液,是指能导电的一种液体,会因为使用环境不同、物质配方会不同,但是功能是一样的,就是具有导电的功能。
    发表于 04-16 09:40 2.1w次阅读

    科学家的新发现提高了半固态硫电池的性能

    新加坡的研究人员发现了一种电解质,这种电解质可以生产出高度稳定的半固态硫电池,可能使其商业化更近一步。
    的头像 发表于 04-23 16:12 3089次阅读

    KIST研发高性能固态电解质,提高电动汽车整体性能

    据外媒报道,韩国科学技术研究院能源材料中心的Hyoungchul Kim博士研究团队成功研发了一款基于硫化物的超离子导体,可作为一种高性能固态电解质,用于全固态电池。
    发表于 05-20 09:05 569次阅读

    将商业化锂离子电池中的液态电解质替换什么解

    将商业化锂离子电池中的液态电解质替换为固态电解质,并搭配金属负极组成全固态锂离子电池系统,有望从根本上解决锂离子电池系统的安全性问题并大幅提高能量密度。锂离子固态电解质材料需具备可与液态电解质比拟
    的头像 发表于 06-09 09:00 1904次阅读

    新型固体材料可替代电池中的易燃液体电解质

    在电池充放电过程中,锂离子通过电解质在正负极之间穿梭。大多数锂离子电池使用的是液体电解质,如果电池被击穿或短路,电解质就会燃烧。与之相反,固体电解质很少着火,而且可能更有效。
    发表于 09-25 10:21 707次阅读

    锂离子电池堆电解质的要求及对电池性能的影响

        一、锂离子电池电解质的基本要求用于锂离子电池的电解质应当满足以下基本要求,这些是衡量电解质性能必须考虑的因素,也是实现锂离子电池髙性能、低内阻、低价位、长寿命和安全性的重要前提。 图1
    的头像 发表于 12-30 10:41 2845次阅读
    锂离子电池堆<b>电解质</b>的要求及对电池性能的影响

    宁德时代公开“一种固态电解质的制备方法”专利

    1月20日消息,企查查APP显示,宁德时代公开“一种固态电解质的制备方法”“一种硫化物固态电解质片及其制备方法”两种固态电池相关专利。其中第一条公开号为CN112242556A。 专利摘要显示,本
    的头像 发表于 01-20 17:23 2531次阅读
    宁德时代公开“一种<b>固态</b><b>电解质</b>的制备方法”专利

    宁德时代两大固态电池专利解读

          摘要 前一个专利在于提高固态电解质的电导率;后一个专利在于提高固态电解质片的电导率、电池的能量密度及循环性能。 金属与液态电解质界面副反应多、SEI膜分布不均匀且不稳定导致循环寿命差
    的头像 发表于 01-26 10:01 3756次阅读
    宁德时代两大<b>固态</b>电池专利解读

    为锂电池寻找性能更加优异的固态电解质和电极材料

    近年来,许多研究团队都在努力为锂电池寻找性能更加优异的固态电解质和电极材料。
    的头像 发表于 03-18 13:49 1618次阅读

    简述枝晶穿过陶瓷固态电解质的机制及缓解策略

      研究表明,相比传统的锂离子电池,使用金属作为负极和陶瓷作为固态电解质固态电池,具有更高安全性和能量密度。然而,在实际电流密度下金属进行沉积时,往往会穿透固态电解质并导致短路,这是制约其
    的头像 发表于 04-29 10:20 2543次阅读
    简述<b>锂</b>枝晶穿过陶瓷<b>固态</b><b>电解质</b>的机制及缓解策略

    中科院设计出一种用于柔性全固态金属电池的固体聚合物电解质

    【研究背景】 全固态金属电池具有优异的循环性能和倍率性能,是最有前途的下一代储能设备之一。其中,固体聚合物电解质由于其良好的灵活性、较低的成本和易于加工和放大等特性而被视为最有前景的全固态锂电池
    的头像 发表于 05-26 11:35 2796次阅读

    剖析稳定金属电池的长效固体电解质界面

    电解质界面(SEI)层的固体电解质是一个重大的挑战。 本文介绍了一种新的电解质添加剂—饱和的P2S5-CS2(PSC)溶液(1wt.%),以修饰酯基电解质,可形成离子导电SEI来稳定金属。研究发现,P2S5可以通过CS2溶解,该溶液可以促进原位形成含有无机Li−P−S化合物
    的头像 发表于 06-04 15:25 1813次阅读

    固态电解质驱动应力变化监测

    电池在可再生能源持续转型的过程中发挥着不可替代的作用,特别是可充电锂离子电池(LIB)日益成为消费电子、电网、航空航天和电动汽车等战略新兴行业的主导力量。基于无机固体电解质的全固态锂离子电池(ASSB)可提供更高的安全性,更是下一代储能产业有力的候选者。
    的头像 发表于 03-21 14:02 1035次阅读

    “分子桥”修饰提高金属负极/固态电解质界面稳定性

    作为固态锂电池的重要组成部分,固态电解质的理化性质对固态锂电池电化学性能的发挥至关重要。理想的固态电解质材料应具有高的室温离子电导率、高的氧化电位、高的机械强度,同时对正负电极具有良好的界面相容性。
    的头像 发表于 03-31 14:13 1060次阅读

    原位固态化聚合物电解质基高性能准固态软包锂电池

    采用固态电解质代替易燃液体电解质可提高电池的安全性。近年来,已开发出多种固态电解质(SSEs),包括硫化物、氧化物、卤化物、反钙钛矿和聚合物电解质(PEs)。它们中的某些离子电导率甚至高于液体电解质
    的头像 发表于 06-22 14:30 2906次阅读

    固态电解质类型及相关特性梳理

    电芯内液体含量逐年减少,液态电解液逐渐转变为固液混合电解液,最终被全固态所取代;负极中金属的含量逐渐增加,最终达到以纯金属为负极材料的全固态电池;正极由LFP/NCM等材料逐步转化为以硫和空气为正极材料的全固态电池。
    的头像 发表于 07-08 10:37 3290次阅读

    如何可靠地测量固态电解质的离子电导率?

    图2展示了不同AM、GC和μC固态电解质的Li+离子电导率数据,其是针对不同的颗粒制造压力值绘制的。在低堆栈压力下,由于SE颗粒与碳化钨电极接触不良,所有材料的离子电导率值都非常低。
    的头像 发表于 07-22 11:26 1802次阅读

    固态金属电池中的电解质-负极界面保护层

    电解质-负极界面处引入保护层是解决上述问题的一种可行办法,这在最近几年获得了学术界的广泛关注。之前的研究中发现了LiF,LiI,ZnO和h-BN等材料可被用于稳定固态电解质和负极之间的界面
    的头像 发表于 08-11 15:08 1081次阅读

    通过目标回收实现短路固态电解质的直接回收

    LLZO石榴石型固态电解质因为其较高的室温离子电导率(10-4-10-3 S/cm),良好的电化学稳定性以及较高的力学强度受到研究人员的广泛关注。但电池在室温运行中,LLZO会被枝晶穿透,从而发生短路。
    的头像 发表于 08-16 09:36 555次阅读

    聚合物固态电解质的合理设计

    对最近为高性能全固态锂电池应用而设计的聚合物基电解质方法进行了回顾和讨论。这里显示了最新的不同设计方法,包括:将添加剂纳入聚合物基体,聚合物基体的结构改性,以及盐分子设计。
    发表于 08-18 10:12 479次阅读

    具有分级离子通道的柔性准固态电解质的“树干”设计,实现超长寿命金属电池

    本工作受树干多层结构启发,首次构筑具有分层离子通道的灵活,且坚固的有机准固态电解质——Li-MOF/纤维素(简称Li-MC),其离子电导率为1.36´10-3S cm-1,迁移数为0.72,电化学稳定窗口为5.26 V。
    的头像 发表于 08-19 09:45 527次阅读

    金属穿透单晶固态电解质的原位电镜表征

    在电池的制造及循环过程中,金属与固态电解质界面普遍存在着接触不充分的情况,这些局部接触位点通常被称为“热点”(“hot spots”)。这些热点的局部电流密度通常比电池平均电流密度要高得多,因此枝晶往往会从这些热点部位开始往固态电解质内部渗透。
    发表于 08-31 11:10 263次阅读

    浓度极化诱导相变稳定聚合物电解质中的

    本工作利用具有高时间分辨率、成像速度和灵敏度的受激拉曼散射(SRS)显微镜研究了固体聚合物电解质(SPE)与电极的相互作用。结果表明,浓差极化并没有促进晶须的生成,而是降低了/电解质界面的盐浓度,使单相PEO电解质转变为两相PEO电解质
    的头像 发表于 09-06 10:39 422次阅读

    基于氧化物固态电解质的钠电池(OSSBs)的研究进展介绍

    氧化物固态电解质的主要优点是通用性强、稳定性高、寿命长、操作安全、无泄漏,可极大提高储能钠基电池的安全性能。
    发表于 09-16 09:33 609次阅读

    阐述电解质内部的电化学过程和力学现象

    固态电解质内部的细丝(枝晶)生长是造成电解质结构损伤、性能退化甚至内部短路的重要原因,严重限制固态金属电池的商业化应用。
    的头像 发表于 09-27 10:24 477次阅读

    氟化石墨烯增强聚合物电解质用于固态金属电池

    固体聚合物电解质(SPEs)在固态锂电池中有着广阔的应用前景,但目前广泛应用的PEO基聚合物电解质室温离子电导率和机械性能较差,电极/电解质界面反应不受控制,限制了其整体电化学性能。
    发表于 09-28 09:46 479次阅读

    钠离子电池的电解质分类

    固态电解质材料主要包括三种类型:无机固态电解质、聚合物固态电解质、复合固态电解质
    发表于 10-09 09:14 1118次阅读

    如何发挥MXene二维材料和反钙钛矿固态电解质的优势

    合理的电极/电解质界面构建,有望解决金属的枝晶问题。一方面,三维电子导体骨架的构建可以均匀金属负极内的电子分布实现均匀金属沉积,然而在良电子导体中,Li+与电子的快速结合使金属在三维骨架表面快速沉积,从而导致在其表面产生枝晶而内部空间得不到利用(图1a)。
    的头像 发表于 10-18 11:29 528次阅读

    基于在电解质内部构建介观尺寸上垂直于电极方向的连续有机-无机界面

    近日,上海电力大学徐群杰教授团队报道了一种在电解质内部构建介观尺寸上垂直于电极方向的连续有机-无机界面,以提升固态电解质离子传导能力的策略。
    的头像 发表于 10-18 15:01 240次阅读

    一种相变电解质(PCE)

    Li+溶剂化结构(LSS)被认为是决定金属电池电化学性能的决定性因素。来自北京航天航空大学的李彬团队提出了一种相变电解质(PCE),其LSS可以通过改变电解质的物理状态来进行调节。
    的头像 发表于 10-18 15:54 934次阅读

    IPC电解质发展的进展和挑战

    固态电池(SSB)最近得到了复兴,以提高能量密度和消除与易燃液体电解质的传统锂离子电池相关的安全问题。
    的头像 发表于 10-20 15:48 663次阅读

    改变电解质分布调控固态界面实现高性能固态电池

    固-固界面是高性能固态电池面临的主要挑战,固体电解质(SE)尺寸分布在固态电池有效界面的构筑中起着至关重要的作用。然而,同时改变复合正极层和电解质层的电解质尺寸对固态电池性能,尤其是高低温性能影响如何,目前尚不明确。
    的头像 发表于 10-21 16:03 837次阅读

    相变电解质助力高稳定性金属电池

    锂离子电池中除了电极,电解液也是电池中的重要组成部分。典型的液体电解质由混合溶剂、盐和添加剂组成,以上构成了经典的“溶剂化的阳离子”构型
    的头像 发表于 10-25 09:14 303次阅读

    关于高空气稳定性的硫化物固态电解质

    重要的一部分,硫化物固体电解质因其超高的离子电导率(可达到10-3-10-2与目前液态电解质离子电导率相当)受到了广泛的关注。然而传统的硫化物固体电解质存在空气稳定性差、合成成本较高、与负极界面稳定性差等问题限制了其商业化应用,因此如何解决这些问题是实现硫化物固体电解质大规
    的头像 发表于 11-02 11:55 1513次阅读

    固态电解质中间相的机理探究和设计

    (Li)金属具有高的理论比容量和最低的电化学势,被视为高能电池负极材料的最终选择。然而,由枝晶引发的安全问题阻碍了金属电池的实际应用。设计稳健的人工固体电解质界面相(ASEI)可以有效调节Li沉积行为,避免枝晶带来的安全隐患。然而,研究者们对于异质界面相的内在调节机制还未完全阐明。
    的头像 发表于 11-06 22:56 307次阅读

    DFT和MD方法研究固态电解质构效关系

    多物理场作用下的多尺度载流子迁移行为至关重要 界面问题是固态锂电池失效的关键原因 DFT和MD方法研究固态电解质构效关系
    发表于 11-08 10:42 317次阅读

    高熵微区互锁的全固态聚合物电解质

    传统的线性聚环氧乙烷基全固态聚合物电解质在室温下结晶度高而离子电导率低,为了提高离子电导率往往通过降低聚合物的分子量,但是其机械强度会随之降低,无法抑制枝晶的生长甚至引起热失控等问题
    的头像 发表于 11-10 11:01 506次阅读

    固态电解质引入特殊官能团实现高电压金属固态电池

    在基于固体聚合物电解质(SPE)的金属电池中,双离子在电池中的不均匀迁移导致了巨大的浓差极化,并降低了循环过程中的界面稳定性。
    的头像 发表于 11-16 09:10 724次阅读

    如何有效构建固体电解质的高亲界面

    固态电池由于高比能和高安全性被认为是下一代锂离子电池的候选者。固态电解质固态电池的核心部件,立方石榴石型Li7La3Zr2O12(LLZO)固态电解质(SSE)因具有较高的离子电导率、较宽的电化学窗口
    的头像 发表于 11-24 09:23 320次阅读

    双连续结构在金属电池弹性电解质中的作用

    固态金属电池(LMBs)有望解决枝晶问题,从而提高电池能量密度和安全性。其中,固体聚合物电解质具有成本低、无毒、重量轻等优点,适合大规模生产。
    发表于 11-24 09:28 296次阅读

    使用LLZO/ PEO复合电解质组装固态锂离子电池

    的微通道可以改善电解质和电极之间的界面连接,在大倍率和长循环的条件下提高固态锂离子电池的放电能力。平面图案结构法为通过传统制造工艺开发新型电极构型提供了一个新的视角。当固态锂离子电池因为电极/电解质连接处因动力学差需要更有效的电极界面时,它还可以提供灵活的电极设计和额外的电化
    的头像 发表于 11-28 15:56 452次阅读

    固态电池电解质的分类及性能对比

    固态电池与现今普遍使用的锂电池不同的是:固态电池使用固体电极和固体电解质固态电池的核心是固态电解质,主要分为三种:聚合物、氧化物与硫化物。与传统锂电池具有不可燃、耐高温、无腐蚀、不挥发的特性。
    的头像 发表于 11-30 09:14 4339次阅读

    金属电池的微观结构与固体电解质界面之间的关系

    电池中,随着摩尔浓度的增加而降低的过电位似乎是SEI形成后界面电荷转移电阻降低的结果。在电解质中,较大的锂离子迁移(tLi+)被认为是有利的,因为它延长了位于金属表面附近的电解质中的锂离子耗尽的时间。
    的头像 发表于 12-06 09:53 373次阅读

    Science综述:设计更好的电解质

    电解质相关的互化物在支持多样化的电池化学中起着核心作用。在负极一侧(左),电解质必须形成一个中间相,以防止石墨负极剥落,并且容纳硅电极的急剧体积变化,还要抑制树枝状金属的生长。
    的头像 发表于 12-13 09:31 216次阅读

    超低温LiCoO2电池中通过防冻电解质重建富LiF界面

    因此,开发低温高性能Li//LCO电池的研究重点是提高电解质的低温性能,常见策略主要包括液化气体电解质、共溶剂电解质、添加稀释剂、使用高度氟化溶剂等,但液化气体电解质设计复杂,难以商业化并存在安全隐患,助溶剂和稀释添加剂的使用会限制Li+配位
    的头像 发表于 12-13 14:09 285次阅读

    基于PPS组装的金属电池具有优异的循环稳定性和安全性

    目前,主要是通过新型电解液添加剂的开发、人工SEI层和三维(3D)负极的构建、隔膜的改性和固态/半固态电解质的应用等策略稳定金属负极。其中应用固态/半固体电解质策略也是解决传统液体电池安全问题
    的头像 发表于 12-20 09:33 389次阅读

    关于全固态锂电池的6大成果

    PEO-LLZTO复合固态电解质被认为是最理想的固态电解质选择。然而,金属-电解质界面上不均匀的沉积仍然会造成严重的短路现象。最近,中南大学张治安等在金属负极表面构筑了一层LiF/Li3Sb杂化界面实现了高稳定性的
    发表于 01-05 11:23 790次阅读

    SEI形成如何影响钝化进而影响LMBs的实际性能指标呢

    电解质工程正成为改善金属电池(LMBs)的库伦效率(CE)和循环寿命的首要策略。大多数电解质工程策略涉及电解质混合物中化学物质的调节,目的是在电解质之间形成稳定的界面
    发表于 01-09 09:50 128次阅读

    AM:用于安全金属电池的热响应电解质

    近日,清华大学张强教授和东南大学程新兵教授,设计了一种具有热响应特性的新型电解质体系,极大地提高了1.0 Ah LMBs的热安全性。具体来说,碳酸乙烯酯(VC)与偶氮二异丁腈作为热响应溶剂被引入,以提高固体电解质界面相(SEI)和电解质的热稳定性。
    的头像 发表于 01-10 15:31 193次阅读

    开发相容性高的石榴石-液态电解质界面

    混合固液电解质概念是解决固态电解质负极/正极之间界面问题的最佳方法之一。然而,由于高度反应性的化学和电化学反应,在界面处形成的固液电解质层在较长的循环期间会降低电池容量和功率。
    的头像 发表于 01-11 11:04 256次阅读

    一种稳定的聚合物固态金属电池及其界面特性的冷冻电镜研究

    【研究背景】近年来,固态金属电池因其具有高能量密度、高安全性和长循环寿命而引起了广泛的关注。其中聚合物基固态电解质因具有良好的界面兼容性,被认为是易于实现实际应用的固态电解质。然而,聚合物固态
    的头像 发表于 01-16 11:07 426次阅读

    关于全固态金属电池的高性能硫化物电解质

    固态电池具有安全、能量密度高、适用于不同场合等优点,是最有发展前景的锂离子电池之一。硫化物固体电解质(SSE)因其良好的离子导电性和加工性而受到人们的欢迎。然而,由于SSE导体暴露在空气中
    的头像 发表于 01-16 17:53 418次阅读

    聚合物电解质离子电导率及界面稳定性的影响因素

    高性能固态电解质通常包括无机陶瓷/玻璃电解质和有机聚合物电解质。由于无机电解质与电极之间界面接触差、界面电阻大等问题,聚合物基固体电解质(SPE)和聚合物-无机复合电解质因其具有更高的柔性、更好的界面接触和更易于大规模生
    的头像 发表于 02-03 10:36 574次阅读

    上海电力大学《AFM》:一种新型复合固态电解质设计!

    来自上海电力大学的学者制备了一种新的复合电解质,其中制备了有机聚环氧乙烷(PEO)和无机三氧化钼(MoO3)纳米带的交替层,然后将多层膜卷成片状。与通过无序共混制备的类似电解质相比,这里的电解质具有垂直于电极方向的介观连续有机-无机界面
    的头像 发表于 02-06 16:35 287次阅读

    固态电池中枝晶的起源与调控

    固态电解质中产生的枝晶是影响固态电池安全和效率的重要因素之一(固态电解质中“枝晶”并不是唯一形态,然而为简化讨论,本文统一使用“枝晶”作论述)。
    发表于 02-07 16:43 482次阅读

    4.2V高压全固态聚合物电解质新突破

    聚氧化乙烯(PEO)固体电解质(SE)在全固态锂电池(ASSLB)中是可行的,并具有驾驭电动汽车的高安全性。
    的头像 发表于 02-23 09:50 319次阅读

    Nature Energy:应力控制固态电解质枝晶生长

    作者使用常见的固体电解质Li6.6La3Ta0.4Zr1.6O12(LLZO),用低的施加力进行了22次相同的沉积实验,发现金属以非常高的速率沉积,但在实验过程中仍然在看似随机的时间表现出枝晶生长(失效)。
    的头像 发表于 03-09 11:24 249次阅读

    “文武双全”的卤化物固态电解质

    LiaMX4类电解质主要分为由二价金属离子M构成的正尖晶石相,如Li2MnCl4、Li2ZnCl4等,以及由三价及其他价态金属离子M形成的卤化物电解质,如LiYbF4、LiAlF4等。早期合成的该类卤化物电解质离子电导率较低且部分在常温下无法稳定存在,使得LiaMX4类电解质研究的较少。
    的头像 发表于 03-20 10:24 259次阅读

    金属电解质的高压与高温稳定性探究

    高能金属电池的关键挑战是树枝状的形成、差的CE以及与高压正极的兼容性问题。为了解决这些问题,一个核心策略是设计新型电解质
    的头像 发表于 03-25 17:02 350次阅读

    高电压稳定的固态电解质实现高能量、高安全的固态金属电池

    要点一:高压固态电解质的概念,常见测试方法与高压分解机制。文章针对高压稳定的基础概念与常见理论/实践模型进行了讨论(图2)。此外,还对常用高压稳定固态电解质测试方法进行了概述,为更准确、更规范评估高压稳定固态电解质提出了见解。
    的头像 发表于 03-27 11:41 203次阅读

    康飞宇、贺艳兵团队在固态电池电解质研究领域取得新进展

    近日,清华大学深圳国际研究生院康飞宇、贺艳兵团队与中国科学院大连化物所钟贵明副研究员合作提出了介电陶瓷材料耦合新方法,提出了创建高通量锂离子输运路径以克服复合固态电解质低离子电导率挑战的新策略,构建了高离子电导无机/有机复合固态电解质介电材料
    的头像 发表于 03-30 10:43 182次阅读

    钠-钾电解质界面相实现室温/0°C固态钠金属电池研究

    基于无机固态电解质的金属电池因其能量密度和安全性的优势在电化学储能领域具有巨大应用潜力。
    的头像 发表于 03-30 10:54 174次阅读

    防止固态电解质枝晶扩展的整流界面

    由于枝晶和及其引起的短路等问题,固态金属电池中仍面临着挑战。近年来,研究人员对枝晶生长机制了解了很多,而枝晶的生长问题仍未得到解决。
    的头像 发表于 04-04 10:25 129次阅读

    复合凝胶电解质中无机填料助力金属电池富无机物SEI的形成

    电解质作为与金属直接接触的成分,它们所产生的电极/电解质界面(EEI,包括电解质/正极或电解质/负极界面)的性质与电解质的成分密切相关,同时对于金属的稳定性有着很大的影响。
    的头像 发表于 04-06 14:11 198次阅读

    Materials Today:界面调控和电极输运优化,共筑高性能固态电池

    在高镍正极中引入多功能Ti2O3氧化物,并构筑NCM-12|LPSCI|Li固态电池体系。研究发现,引入的Ti2O3可调节NCM的电子及离子传输性能,且还能作为LPSCI电解质的保护体,与NCM中的活性氧结合,避免电解质的氧化和分解,并提升了电极/电解质界面在高电压下的稳定性。
    的头像 发表于 04-09 09:28 408次阅读

    聚苯并咪唑助力高性能富盐体系聚合物电解质锂离子电池

    近年来,“盐中聚合物”的概念备受关注。在传统的聚合物固态电解质中,盐所占比例低于主要的聚合物基体,可统称为“聚合物中盐”体系。
    的头像 发表于 04-11 10:53 127次阅读

    揭示表面微观结构对石榴石型电解质的Li润湿性和界面离子传输的影响

    金属/固态电解质(SSEs)的界面不良接触会导致界面高阻抗并诱导枝晶的生长,这些问题严重影响了固态电池(SSBs)的实际应用。
    的头像 发表于 04-14 11:56 91次阅读

    金属电池室温固态聚合物电解质的锂离子传导机制

    本文开发了一种异质双层固态聚合物电解质(DSPE),并阐明其在室温下的工作机理。通过分子动力学(MD)模拟提出了丁二腈(SN)与盐之间的分子间相互作用形成的[SN···Li+]溶剂化结构。
    的头像 发表于 04-15 15:08 95次阅读

    固态电解质与电极间界面相亲性

    本文从电极与非液态电解质界面处电化学反应的本质出发,阐明电极与非液态电解质界面相亲性的基本内容及其对电极电化学储能性能的影响机制。
    的头像 发表于 04-15 17:04 52次阅读

    下载硬声App